
William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Fuzzing 101

UMD-CSEC



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

William Woodruff
Security Engineer

william.woodruff@trailofbits.com 
@8x5clPW2    |    github.com/woodruffw

2



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Agenda

● About Trail of Bits

● What is fuzzing?

● Current techniques

● Versus other approaches to automated test generation

○ Ongoing work at Trail of Bits

● Research developments

3



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

About Trail of Bits

● Information security, founded in 2012

● About 50 employees

○ Half remote, half in NYC office

● Research, assurance, and engineering practices

○ Clientele: DARPA, Facebook, Google, LM, Airbnb

● Open source bounties

4



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

What is fuzzing?

● An approach to automated test generation

○ Humans are bad at writing tests/thinking about invariants

○ Have the machine write and perform them for us!

● Fuzzing randomly tests the input space of a program (or a function)

○ Given a function basename(char *str):
■ What happens when str=NULL?

■ ...when strlen(str) >= MAX_PATH?

■ ...when str isn’t valid ASCII/UTF8?

● Fuzzing can help us cover these cases without having to write specific tests!*

5



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Fuzzing from 1000 feet

● Goal 1: Generate lots of inputs, as fast as possible
○ Subgoal: inputs should be diffuse, to avoid duplicating work

● Goal 2: Generate high-quality inputs
○ Inputs are high-quality if they activate novel behavior in the program

● Goal 3: Keep track of inputs that cause crashes, and what kinds of 
crashes they cause

○ Subgoal: deduplicate crashes that are caused by the same bug but different inputs
○ Subgoal: minimize inputs to make eventual triage/remediation simpler

Which goal(s) do we prioritize?

6



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Fuzzing techniques: black-box

● Black-box fuzzers operate with no knowledge of the target program
○ Prioritize goal #1: since we don’t know anything about the target, blast it with as many 

inputs as possible!
● Examples:

○ radamsa, zzuf
○ while true; do program < /dev/urandom; done

● Pros:
○ We spend most of our time actually running the program, not doing bookkeeping
○ We don’t need our target’s source code (or even to be on the same machine!)
○ Claim: Quantity compensates for quality in terms of empirical results

● Cons:
○ We spend most of our time running the program, but with boring test cases
○ Claim: We get stuck in a local maxima, and discover only “shallow” bugs

7



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Black-box strengths and weaknesses
int main(void) {

int x = getw(stdin);

if (x > 100) crash();
else whatever();

}

8

int main(void) {
int x = getw(stdin);

if (x == 0xFEEDFACE) crash();
else whatever();

}

● Which of these programs is the black-box fuzzer going to crash first? 
● What would happen if our crash conditions were more complex, or 

involved nested conditionals?
○ What about multiple distinct crashes, at different levels?



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Demo: Radamsa



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Fuzzing techniques: white-box

● White-box fuzzers operate with (some) knowledge of the target 
program

● Some potential sources of knowledge:
○ Source: which functions do I/O, touch memory, rely on undefined behavior?
○ Static analysis: does the program link to libraries that contain known vulnerabilities? 
○ Specifications: if the program is specified, can we use the spec for counterexamples?

● Example: american fuzzy lop*, SAGE*
● Pros:

○ We can discover “deep” bugs that random inputs would take much longer to hit
○ Claim: Quality compensates for quantity in terms of empirical results (goal #2)

● Cons:
○ We need access to the program’s source or specification

10



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

White-box fuzzing: static analysis

11

typedef struct {
  int foo;
  int size;
} blob;

void* copy(blob* obj) {
  blob* dup = malloc(sizeof(obj));
  memcpy(dup, obj, sizeof(obj));

  return dup;
}

What’s (potentially) wrong with these functions?

Which of these functions is interesting to a fuzzer?

typedef struct {
  int foo;
  int size;
} blob;

void* copy(blob* obj) {
  blob* dup = malloc(obj->size);
  memcpy(dup, obj, obj->size);

  return dup;
}



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Fuzzing techniques: grey-box

● Grey-box fuzzers use dynamic instrumentation to gain knowledge of 
the target program

● Things we can instrument:
○ Basic blocks/CFG edges: does a given input cause us to execute unique BBs/edges? 

How does the tuple of all BBs/edges change as we mutate an input?
● Examples: american fuzzy lop*, libFuzzer (LLVM)
● Pros:

○ We can approximate the benefits of white-box fuzzing without needing source code
○ Claim: With lightweight instrumentation (AFL), we get empirically better/more results 

than either white or black-box fuzzers
● Cons:

○ Instrumentation adds runtime overhead, requires that we modify the program being 
tested (either at compile or runtime), introduces correctness concerns*

12



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Grey-box fuzzing: basic block instrumentation

13

int main(void) {
  int x = getw(stdin);
  int y = 0;

  if (x > 10) {
    y = 1;
    if (x > 100) {
      y = 10;
      if (x > 1000) {
        y = 100;
        crash();
        return 3;
      }
      return 2;
    }
    return 1;
  }
  else {
    puts("nope!");
  }
  return 0;
}

Use changes to the activated basic 
blocks to search the program 
space:

1. Given an input, can we 
minimize it and produce the 
same chain of basic blocks?

2. Once minimized, can we 
activate new basic blocks 
along the same chain?



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Demo: AFL



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

How effective is fuzzing?

Extremely! Even black- and grey-box:

● Microsoft SAGE: Hundreds of bugs found in Windows 7 [1]
● AFL: Firefox, Safari, OpenSSL, OpenSSH, Android, glibc, many more [2]
● oss-fuzz (libFuzzer cluster): 1000 bugs in 47 projects (2017) [3]

How do black/white/grey box strategies stack up?

How do individual fuzzers compare?

● Not a lot of statistical research, or even standardized evaluation 
techniques!

○ Evaluating Fuzz Testing [4]

15



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Other approaches to test generation

● Formal verification and countermodeling
○ Program’s spec might be formally verified, but implementation may not be!

■ Generate test cases that should always fail, according to the formal spec
○ Grammar-based fuzzing

● Symbolic and “concolic” (symbolic + concrete) execution
○ Identify input-controlled variables and symbolize them, then do constraint solution

■ Apply an SMT solver like Z3! [5]
● “Which values of variable x cause the program to take the else branch?”

■ If the input space is small, try all possible values of x!
● No clear line between fuzzing and many other generation strategies

○ SAGE is “white-box”, but uses symbolic information for feedback
○ One property: fuzzing implies an element of randomness

16



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Research developments

● Hardware event-based feedback:
○ Cache misses, page faults, instruction counts, time spent in kernel space, ...
○ Lower performance impact vs. coverage guidance, better results than black-box

● Path and depth estimation
○ “How much of the program’s (interesting) space have we covered so far?”

■ STADS: Software Testing as Species Discovery (Böhme, 2018)
● CPU and kernel-space fuzzing:

○ Undocumented isns, ring violations, kernel memory safety violations
○ CPU: sandsifter (Battelle)
○ Kernel: trinity, syzkaller (Google), kernel-fuzzers (Oracle), kAFL

17



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

18

XNU (iOS/macOS) Kernel RCE

https://lgtm.com/blog/apple_xnu_icmp_error_CVE-2018-4407

http://www.youtube.com/watch?v=aV7yEemjexk
https://lgtm.com/blog/apple_xnu_icmp_error_CVE-2018-4407


William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018 19

Ongoing work at Trail of Bits

● Manticore: Symbolic execution for x86(_64), ARMv7, EVM bytecode [6]
○ Input generation, instruction tracing

● DeepState: Drop-in gtest compatible symbolic execution + fuzzing [7]
● Echidna: Grammar-based fuzzing/property testing for EVM [8]
● Sienna Locomotive: Coverage-guided black-box fuzzing for Windows

○ Integrated crash triage and vulnerability estimation
● Toolchain advancements:

○ Etheno: JSON RPC multiplexer for running multiple Ethereum analysis tools [9]
○ McSema and remill: Binary lifting (assembly to LLVM) and translation [10, 11]

■ Can be used to make a binary compatible with libFuzzer!



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

<a href="https://asciinema.org/a/e6cPUVkkPOK6bbFfzCNGqGgPv" target="_blank"><img 
src="https://asciinema.org/a/e6cPUVkkPOK6bbFfzCNGqGgPv.svg" /></a>Demo: Manticore



William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Sources

[1]: https://patricegodefroid.github.io/public_psfiles/SAGE-in-1slide-for-PLDI2013.pdf 

[2]: http://lcamtuf.coredump.cx/afl/

[3]: https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html

[4]: https://arxiv.org/pdf/1808.09700

[5]: https://github.com/Z3Prover/z3

[6]: https://github.com/trailofbits/manticore

[7]: https://github.com/trailofbits/deepstate

[8]: https://github.com/trailofbits/echidna

[9]: https://github.com/trailofbits/etheno

[10]: https://github.com/trailofbits/mcsema

[11]: https://github.com/trailofbits/remill

21

https://patricegodefroid.github.io/public_psfiles/SAGE-in-1slide-for-PLDI2013.pdf
http://lcamtuf.coredump.cx/afl/
https://opensource.googleblog.com/2017/05/oss-fuzz-five-months-later-and.html
https://arxiv.org/pdf/1808.09700
https://github.com/Z3Prover/z3
https://github.com/trailofbits/manticore
https://github.com/trailofbits/deepstate
https://github.com/trailofbits/echidna
https://github.com/trailofbits/etheno
https://github.com/trailofbits/mcsema
https://github.com/trailofbits/remill


William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018

Additional Resources

● “Super Awesome Fuzzing: Part One”
● https://github.com/CENSUS/choronzon
● https://github.com/MozillaSecurity/dharma
● https://github.com/aoh/blab

22

https://labsblog.f-secure.com/2017/06/22/super-awesome-fuzzing-part-one/
https://github.com/CENSUS/choronzon
https://github.com/MozillaSecurity/dharma
https://github.com/aoh/blab


William Woodruff  |  Trail of Bits   |   Fuzzing 101  |  11.14.2018


