
EMFS: Repurposing SMTP and IMAP for
Data Storage and Synchronization

William Woodruff
william@tuffbizz.com

January 29, 2016
v1.0

Abstract

Cloud storage has become a massive and lucrative business, with com-
panies like Apple, Microsoft, Google, and Dropbox providing hun-
dreds of millions of clients with synchronized and redundant stor-
age. These services often command price-to-storage ratios significantly
higher than the market rate for physical storage, as well as increase
the surface area for data leakage. In place of this consumer-unfriendly
status quo, I propose using widely available, well standardized email
protocols like SMTP and IMAP in conjunction with free email service
providers to store, synchronize, and share files across discrete systems.

1

mailto:william@tuffbizz.com

Contents

1 Introduction 3

2 Email as a General-Purpose Storage Service 4
2.1 Usenet as a Precedent . 4

2.1.1 Protocol and Topological Similarities 4
2.1.2 Usage Similarities . 5

2.2 Advantages over NNTP . 5
2.3 Advantages over CSPs . 6

2.3.1 Security . 6
2.3.2 Extensibility and Transparency 6

3 Architecture 6
3.1 Filesystem Primitives . 7

3.1.1 Types . 7
3.1.1.1 Files . 7
3.1.1.2 Directories 8

3.1.2 Operations . 9
3.1.2.1 Filesystem Creation 9
3.1.2.2 Directory Creation 9
3.1.2.3 Directory Deletion 10
3.1.2.4 File Creation 10
3.1.2.5 File Deletion 11
3.1.2.6 Indexing . 11

4 Applying EMFS to Common ESPs 12
4.1 ESP Statistics . 12

4.1.1 Google Gmail . 12
4.1.2 Microsoft Outlook . 12
4.1.3 Shared Characteristics 12

4.2 Potential Hurdles and Concerns 13
4.2.1 Countermeasures by ESPs 13
4.2.2 Sharing Between Users 13

5 Conclusions 13

6 Afternotes 14
6.1 Future Directions . 14
6.2 Implementation . 15

2

1 Introduction

Remote storage and synchronization of data, commonly referred to as “cloud”
storage, has become increasingly popular with companies and consumers
alike as both a redundancy measure and as a way to share informations
across a diverse range of platforms. For companies, this reduces or elimi-
nates the need to maintain internal network filesystems like NFS and CIFS.
For consumers, having a remotely accessible copy of data simplifies common
tasks like social sharing (pictures, video) and reduces the frustration of using
multiple computers (desktop, laptop, smartphone) for a common task.

Cloud storage providers (CSPs) generally divide their service into a free
tier and a paid tier. Free tier users are usually restricted in terms of how
much they can upload, but may also be subject to slower upload speeds and
limited trial periods. Paid users are also usually restricted in terms of total
upload capacity, but at much higher limits and may not be subject to the
same level of throttling as free users.

Beyond price concerns, the prevalence of CSPs has expanded the surface
area for data breaches on both an individual and company level. Incidents
like the Apple-owned iCloud leak [1] and security loopholes like Dropbox’s
lax public URL policy [2] reflect poor security choices by users and service
providers alike. This is exacerbated by the widespread use of proprietary
(and mutually incompatible) clients and protocols by CSPs, leaving users at
the mercy of their provider of choice for updates.

There have been attempts to provide open-source and user-controlled
alternatives to CSPs [3, 4], but all rely on a level of technical commitment
and expertise comparable to managing a traditional networked filesystem.
Since the goal of “cloud” storage is to eliminate the technical barrier to data
synchronization, these alternatives are not currently suitable for the majority
of CSP users.

As an alternative to both traditional CSPs and their open-source replace-
ments, I propose a system that uses the already open Simple Mail Transport
Protocol (SMTP) [5] and Internet Message Access Protocol (IMAP) [6] in
conjunction with free email service providers (ESPs) to store, synchronize,
and share data between both users and machines. I call this system the
EMail FileSystem, or EMFS.

3

2 Email as a General-Purpose Storage Ser-

vice

2.1 Usenet as a Precedent

2.1.1 Protocol and Topological Similarities

The topology of the Usenet network bears an uncanny resemblance to the
contemporary email network, with clients connecting to a ring of relay servers
responsible for distributing the latest posts to all recipient newsgroups.

The Network News Transport Protocol (NNTP) [7, 8], the dominant con-
temporary Usenet protocol, also closely resembles SMTP in message struc-
ture:

Listing 1: NNTP session

< CONNECT news.foo.com

> 200 news.foo.com NEWS

< POST

> 340 Ok, recommended ID

↪→ <beef@news.foo.com >

< From: bar@baz.com

< Newsgroups: misc.quux

< Subject: Hello!

< Message -ID: <beef@news.

↪→ foo.com >

< ←↩
< Hello , World!

< .

> 240 article posted ok

< QUIT

> 205 Goodbye

Listing 2: SMTP session

< CONNECT smtp.foo.com

> 220 smtp.foo.com SMTP

< HELO smtp.foo.com

> 250 Hello!

< MAIL FROM: <bar@baz.com

↪→ >

> 250 Ok

< RCPT TO: <quux@baz.com >

> 250 Ok

< DATA

> 354 End data with <CR ><

↪→ LF >.<CR><LF>

< Subject: Hello!

< From: bar@baz.com

< To: quux@baz.com

< ←↩
< Hello , World!

< .

> 250 Ok: queued as 105

< QUIT

> 221 Goodbye

4

2.1.2 Usage Similarities

Usenet was originally developed to share text-based news and threaded dis-
cussions. As academic and social usage of the Internet expanded, Usenet
users took advantage of the network’s mirroring capabilities to share en-
coded binary files. The most notable Usenet hierarchy for binary sharing
has historically been alt.binaries.*, with many providers and authorities
limiting access to their entire alt.* hierarchy due to the abundance of ille-
gal content [9, 10]. As of 2010, 99% of all traffic over NNTP is yEnc binary
data [11]. Because Usenet mirrors its data across every provider it has also
been used as a backup service [12], with users uploading encrypted data to
globally visible newsgroups.

Email, like Usenet, was originally developed to share text-based messages,
albeit between sets of addresses instead of discussion hierarchies. Just like
Usenet, email adapted to share binary content as the needs of users diversi-
fied to include multimedia and rich document types. Unlike Usenet, email
networks have never seen the proliferation of organized binary sharing.

2.2 Advantages over NNTP

There are a number of benefits to storing and sharing binary data over SMTP
and IMAP instead of NNTP.

Unlike Usenet messages, email messages are not directed to a global hi-
erarchy. The destination of an individual (SMTP composed) email may be
a mailing list, N distinct addresses, or even the sending address itself. As a
result, clients may exercise more autonomy over where their data is sent and
when it requires encryption.

Although yEnc has emerged as a de-facto standard [11] encoding on
Usenet, there is no formal standard for sending non-text data over NNTP.
Consequently, Usenet newsreaders regularly suffer both false negatives and
positives when fetching encoded binaries [13, 14]. By comparison, MIME-
encoded binaries were introduced as an extension in 2000 and are now uni-
versally handled by rich email clients [15].

5

2.3 Advantages over CSPs

2.3.1 Security

The use of an extant email account for storage confers a number of security
and usability benefits compared to a traditional CSP. Instead of having to
register for a new service, users can access their files with their email cre-
dentials. This alone eliminates the attack surface normally associated with
cloud storage, with no danger of data leakage from public URLs and half as
many potential points of misconfiguration or attack.

The prevalence of TLS-secured open email protocols is also advantageous,
as EMFS may take advantage of the existing email security and privacy
infrastructure instead of implementing its own. In particular, STARTTLS
for both SMTP and IMAP [16, 17] is universally supported by large email
providers. Beyond transit security, an implementation of the open Pretty
Good Privacy (PGP) standard [18] can be used to ensure storage security.

2.3.2 Extensibility and Transparency

To protect their intellectual property and remain competitive, large CSPs
make extensive use of proprietary protocols and clients. Although these
methodologies can be observed and analyzed [19], their closed nature hinders
interoperability and locks users into vendor-specific ecosystems. Because
EMFS operates solely on the email infrastructure and utilizes open protocols,
it can be extended and modified trivially both by users and developers as
demands evolve.

The presence of EMFS on a user’s account is also fully opaque to the
ESP, as EMFS traffic is identical to normal email traffic. From the user’s
perspective, the only evidence of EMFS is an IMAP folder of their choosing
used to store messages. In the full spirit of the SMTP and IMAP proto-
cols, this allows the user to treat their email client as a basic file manager
by using standard email primitives (Compose, Edit, Delete) to manipulate
synchronized data.

3 Architecture

Like any other filesystem, the architecture of EMFS can be broken into
discrete primitives that can be categorized by type or operation. EMFS

6

is also interacted with as a normal hierarchical filesystem, providing a tree
whose root is the virtual mountpoint for the EMFS instance.

3.1 Filesystem Primitives

3.1.1 Types

EMFS is aware of two primitive types: files and directories.

3.1.1.1 Files EMFS files are chains of N email messages, both header
and body, where N is greater than or equal to 1. In terms of lookup, a
message chain for a given file F divided into N messages behaves like a
linked list:

F0 F1 · · · FN−2 FN−1

Message chains represent literal data, with no facilities for UNIX-like
symbolic linking. Two functions are required to generate the content in an
EMFS message chain, an 8-bit encoding function Encode8 and a hashing
function Hash. Hash may be as simple as an iterative function.

An EMFS file might have a message-representation as follows:

Listing 3: EMFS Message

1 From: foo@bar.com

2 To: foo@bar.com

3 Subject: first -id -hash filename

4 EMFS -Filename: filename

5 EMFS -Next: next -id-hash

6
7 encoded -body

Where first-id-hash is the first ID hash in the sequence, next-id-hash
is the ID hash of the next message in F , and the generic id-hash is found
by:

id-hash← Hash(filename,N)

And where encoded-body is found by:

encoded-body← Encode8 (file-slice)

Where file-slice is the array of data of FN .

7

3.1.1.2 Directories EMFS directories are mapped directly onto the IMAP
notion of “folders”. An IMAP folder is said to contain M messages for K
files, each file split across KN messages such that:

M =
K∑

F=1

FN

As such, from the IMAP perspective, the EMFS hierarchy looks like this:

emfs/

Hash(K10)
example.png

Hash(K00)
example.txt

example/

Hash(K ′02)
hello.mp4

Hash(K ′01)
hello.mp4

Hash(K ′00)
hello.mp4

And from the file manager’s perspective:

emfs/

example.png

example.txt

example/ hello.mp4

Files with only one message (i.e., FN | N = 1) are constituted directly.
More notably, hello.mp4 is constituted into a single file from three messages
(i.e., FN | N = 3) under the IMAP example/ folder.

8

3.1.2 Operations

3.1.2.1 Filesystem Creation Because the entirety of each discrete EMFS
instance resides in its own IMAP folder hierarchy, the creation of an instance
requires the creation of a root IMAP folder. This is accomplished by issuing
a CREATE verb during a short IMAP session:

Client Server

EMFS Init

IMAP Auth

LOGIN U P

EMFS Create Root
OK LOGIN

IMAP Create

CREATE EMFS

EMFS Logout

OK

IMAP Logout

LOGOUT

3.1.2.2 Directory Creation Like the creation of the EMFS instance,
the creation of individual directories within an instance relies on the IMAP
CREATE verb. To create nested directories below the root level in a fash-
ion similar to UNIX’s mkdir -p, the SELECT verb is also required. Shown
iteratively:

Algorithm 1 Directory Creation

1: procedure EMFS Mkdir(directory)
2: delimiter← the symbol used to delimit directories
3: directories← Split(directory, delimiter)
4: for d ∈ directories do
5: if @d then
6: IMAP Create(d)
7: end if
8: IMAP Select(d)
9: end for

10: end procedure

9

3.1.2.3 Directory Deletion In the most extreme case, an EMFS direc-
tory deletion should remove all messages and subfolders in the correspond-
ing IMAP folder in a fashion similar to UNIX’s rm -rf. Because the IMAP
DELETE verb will refuse to operate when given a folder with subfolders, EMFS
must descend to all subfolders and perform DELETE on them first. Shown
recursively:

Algorithm 2 Directory Deletion

1: procedure EMFS Rmdir(directory)
2: subdirs← all subdirectories of directory
3: if subdir = ∅ then
4: IMAP Delete(directory)
5: return
6: else
7: for d ∈ subdirs do
8: EMFS Rmdir(d)
9: end for

10: end if
11: end procedure

3.1.2.4 File Creation The conversion of file data into a chain of mes-
sages is complicated by the lack of a standardized encoded message size limit
across common mail servers [20, 21, 22]. For the sake of generality, the EMFS
message chunking algorithm makes reference to this size limit as S.

Algorithm 3 File Creation

1: procedure EMFS Put(filename)
2: file← Encode8 (Read((filename)))
3: slices← file slices of size ≤ S of file
4: messages← EMFS Pack(filename, slices)
5: for m ∈ messages do
6: SMTP Send(m)
7: end for
8: end procedure

Where EMFS Pack is defined as follows:

10

Algorithm 4 Message Packing

1: procedure EMFS Pack(filename, slices)
2: messages← an empty list
3: size← Count(slices)− 1
4: for i ∈ Range(0, size) do
5: id← Hash(slices[i])
6: next id← −1
7: if i < size then
8: next id← Hash(slices[i + 1])
9: end if

10: message← Build Message(filename, id, next id, slices[i])
11: Append(messages, message)
12: end for
13: return messages

14: end procedure

Where Build Message constructs an SMTP envelope and body of the
form specified in Listing 3.

3.1.2.5 File Deletion File deletion is a straightforward matter of fol-
lowing the hash chain after resolving the first node from the EMFS-Filename

SMTP envelope header field.

Algorithm 5 File Deletion

1: procedure EMFS Delete(filename)
2: message← the first SMTP message in the file chain
3: do
4: next id← SMTP Header(message, EMFS-Next)
5: IMAP Delete(message)
6: message← EMFS Next(filename, next id)
7: while next id 6= −1
8: end procedure

3.1.2.6 Indexing Because operations that require file or directory dis-
covery would become extremely expensive in terms of both network time and
computation if each performed its own IMAP LIST verb, EMFS maintains

11

its own cached index of the IMAP message hierarchy. This index is built
at the beginning of each session and updated whenever an EMFS operation
modifies the IMAP hierarchy.

4 Applying EMFS to Common ESPs

4.1 ESP Statistics

4.1.1 Google Gmail

Gmail is the world’s largest free ESP, hosting over 900 million active users as
of May 2015 [23]. It was also one of the first to offer large storage capacities
for nonpaying users, beginning with 1GB and currently offering 15GB shared
across the all services tied to a user’s Google account [24, 25]. Gmail caps
attachment size to 25MB [20].

4.1.2 Microsoft Outlook

Microsoft Outlook, previously Hotmail, is one of the earliest web-based ESPs.
It is also currently the second largest ESP with a free plan, with 400 million
active as of 2014 [26]. Outlook’s free plan includes unlimited email storage
and is not tied to quotas for other services on the same account [27]. Outlook
caps attachment size to 20MB [22].

4.1.3 Shared Characteristics

Together, Gmail and Outlook store the emails of over 1.3 billion active users.
They are both core components of mature corporations, and both have estab-
lished themselves as standards for both personal and corporate email service
[28].

In addition to their webmail interfaces, both give their users full SMTP
and IMAPv4 access, including support for session encryption via TLS. Both
offer large attachment sizes and large storage capacities (albeit ultimately
limited in the case of Gmail). Together these qualities make Gmail and
Outlook, as well as other large ESPs like Yahoo! and AOL, more than suitable
as hosts for EMFS instances.

12

4.2 Potential Hurdles and Concerns

4.2.1 Countermeasures by ESPs

Because EMFS takes advantage of the storage offerings of ESPs without
sending meaningful amounts of email traffic between distinct users, it’s pos-
sible that large providers will take steps to curb such usage of their service.
In addition, since many large ESPs are also CSPs, usage of EMFS on their
free accounts may be treated as an attempt to circumvent payment for their
services.

4.2.2 Sharing Between Users

Although IMAP allows email users to create folder hierarchies in their ac-
counts and organize their messages into these folders, all ESPs employ a
“standard” behavior of sending new incoming emails to the user’s inbox
folder. This behavior is in conflict with EMFS ’s principles of invisibility and
noninteraction with regards to “normal” email traffic. Although EMFS can
veil this behavior on an individual email account by issuing IMAP commands
to move EMFS messages to their dedicated hierarchy, sharing attempts be-
tween multiple email addresses may be complicated by a need to initially
index all received mail for files sent before EMFS configuration by the recip-
ient.

5 Conclusions

EMFS has many advantages over conventional CSPs, as well as some disad-
vantages.

In principle, EMFS is substantially simpler to use and secure than any
CSP. Its simplicity derives from its use of the user’s email account and cre-
dentials rather than a distinct account and credentials on a CSP, meaning
that the user need only remember one login to access both files and emails.
“Creation” of an EMFS store is the simple act of signing in to the client for
the first time. It is also secured on a transport level by ubiquitous START-
TLS support in both SMTP and IMAP among large ESPs. Overall, the
combination of simplicity in setup and a security ecosystem built on open
standards makes EMFS an appealing alternative to distinct CSP accounts
and unaudited encryption stacks.

13

In addition to its simplicity of operation, EMFS is also completely ven-
dor independent. It makes a minimum number of assumptions about the
capabilities of the servers it uses, allowing users to be flexible in their ESP
choices. Although its structure is inspired by a desire to store data at no
cost to the user, paid email plans are just as capable of hosting it.

With these advantages come some natural disadvantages. EMFS makes
no attempt to provide a simple user-to-user synchronization mechanism equiv-
alent to the “shared folder” idiom in cloud storage. It also does not provide
an HTTP gateway for one-way file sharing, as many CSPs do. Neither of
these tasks is impossible under the EMFS infrastructure, but both incur sig-
nificant complexities and consideration in setup. EMFS performance is also
heavily dependent on the good grace and bandwidth of the user’s ESP.

Overall, EMFS is best suited to the personal storage and synchronization
needs of a single user across multiple machines. Portability and platform
support is limited only by the existence of a storage medium and a functional
network stack.

6 Afternotes

6.1 Future Directions

The potential use of PGP to ensure message security was noted in Section
2.3.1, but no approach was given. In principle, adding PGP to the EMFS
architecture should be as simple as adding an encryption and decryption
layer before and after each individual message transmission and retrieval.

A compression layer is another potential addition to EMFS, either ap-
plied early to the whole data being uploaded or after chunking (but before
encryption). The application of this would be a performance tradeoff be-
tween (de-)compression times and long message chains. Depending on the
frequency of access, performance of IMAP calls, and choice of hardware and
compression algorithm, it may or may not be preferable to limit the length
of message chains via such a layer.

Although this paper lays out algorithms for the most common EMFS
operations, it does not provide much detail on aspects of synchronization
from the user’s perspective. The simplest potential synchronization mecha-
nism would be an file event watcher, pointed at the directory of the EMFS
“mount”. As file events are observed, the appropriate EMFS operation could

14

be dispatched. This has the benefit of being divorced from the heavy lifting
done by EMFS in chunking and reconstituting messages into files.

6.2 Implementation

The first program resembling an EMFS implementation was written (well)
before this paper, over a period of 48 hours at a hackathon. It lacks many of
the abilities of the system described here, but provides a brief glimpse at a full
user experience in the form of both web and virtual filesystem frontends. It
can be found at https://github.com/fcf634cbe8298176f7c576faed0e500a,
although the author does not advise its usage.

Figure 1: The earliest EMFS, showing email, filesystem, and web views.

A full implementation corresponding more closely to the system described
here is in progress, but has not been released yet. When released, it will be
available at https://github.com/emfs-redux.

15

https://github.com/fcf634cbe8298176f7c576faed0e500a
https://github.com/emfs-redux

References

[1] Apple Inc. Apple Media Advisory - Update to Celebrity Photo Investi-
gation. 2014. url: https://www.apple.com/pr/library/2014/09/
02Apple-Media-Advisory.html (visited on 01/10/2016).

[2] Graham Cluley. Dropbox Users Leak Tax Returns, Mortgage Applica-
tions and More. 2014. url: https://www.grahamcluley.com/2014/
05/dropbox-box-leak/ (visited on 01/10/2016).

[3] Syncthing. 2016. url: https://syncthing.net/ (visited on 01/10/2016).

[4] ownCloud. 2016. url: https://owncloud.org/ (visited on 01/10/2016).

[5] Jonathan Postel. Simple Mail Transport Protocol. RFC 821. 1982, pp. 1–
72. url: https://tools.ietf.org/pdf/rfc821.

[6] M Crispin. Internet Message Access Protocol - Version 4rev1. RFC
3501. 2003, pp. 1–108. url: https://tools.ietf.org/pdf/rfc3501.

[7] Brian Kantor and Phil Lapsley. Network News Transfer Protocol. RFC
977. 1986, pp. 1–27. url: https://tools.ietf.org/pdf/rfc977.

[8] C Feather. Network News Transfer Protocol. RFC 3977. 2006, pp. 1–
125. url: https://tools.ietf.org/pdf/rfc3977.

[9] Declan McCullagh. N.Y. Attorney General Forces ISPs to Curb Usenet
Access. 2008. url: http://www.cnet.com/news/n-y-attorney-
general-forces-isps-to-curb-usenet-access/ (visited on 01/11/2016).

[10] Declan McCullagh. Verizon Offers Details of Usenet Deletion: alt.*
Groups, Others Gone. 2008. url: http : / / www . cnet . com / news /

verizon - offers - details - of - usenet - deletion - alt - groups -

others-gone/ (visited on 01/11/2016).

[11] Juhoon Kim et al. “Today’s Usenet Usage: NNTP Traffic Character-
ization”. In: INFOCOM IEEE Conference on Computer Communica-
tions Workshops, 2010. 2010, pp. 1–6. doi: 10.1109/INFCOMW.2010.
5466665.

[12] Backup Your Data on Usenet for Free (uBackup). 2014. url: http:
//www.ngprovider.com/ubackup.php (visited on 01/10/2016).

[13] Claus Färber. yEnc Considered Harmful. 2002. url: http://www.

faerber.muc.de/temp/20020304-yenc-harmful.html (visited on
01/10/2016).

16

https://www.apple.com/pr/library/2014/09/02Apple-Media-Advisory.html
https://www.apple.com/pr/library/2014/09/02Apple-Media-Advisory.html
https://www.grahamcluley.com/2014/05/dropbox-box-leak/
https://www.grahamcluley.com/2014/05/dropbox-box-leak/
https://syncthing.net/
https://owncloud.org/
https://tools.ietf.org/pdf/rfc821
https://tools.ietf.org/pdf/rfc3501
https://tools.ietf.org/pdf/rfc977
https://tools.ietf.org/pdf/rfc3977
http://www.cnet.com/news/n-y-attorney-general-forces-isps-to-curb-usenet-access/
http://www.cnet.com/news/n-y-attorney-general-forces-isps-to-curb-usenet-access/
http://www.cnet.com/news/verizon-offers-details-of-usenet-deletion-alt-groups-others-gone/
http://www.cnet.com/news/verizon-offers-details-of-usenet-deletion-alt-groups-others-gone/
http://www.cnet.com/news/verizon-offers-details-of-usenet-deletion-alt-groups-others-gone/
http://dx.doi.org/10.1109/INFCOMW.2010.5466665
http://dx.doi.org/10.1109/INFCOMW.2010.5466665
http://www.ngprovider.com/ubackup.php
http://www.ngprovider.com/ubackup.php
http://www.faerber.muc.de/temp/20020304-yenc-harmful.html
http://www.faerber.muc.de/temp/20020304-yenc-harmful.html

[14] Jeremy Nixon. Why yEnc is bad for Usenet. 2002. url: http://www.
exit109.com/~jeremy/news/yenc.html (visited on 01/10/2016).

[15] C Feather. SMTP Service Extensions for Transmission of Large and
Binary MIME Messages. RFC 3030. 2000, pp. 1–12. url: https://
tools.ietf.org/pdf/rfc3030.

[16] P Hoffman. SMTP Service Extension for Secure SMTP over TLS. RFC
2487. 1999, pp. 1–8. url: https://tools.ietf.org/pdf/rfc2487.

[17] C Newman. Using TLS with IMAP, POP3 and ACAP. RFC 2595.
1999, pp. 1–15. url: https://tools.ietf.org/pdf/rfc2595.

[18] J Callas et al. OpenPGP Message Format. RFC 4880. 2007, pp. 1–90.
url: https://tools.ietf.org/pdf/rfc4880.

[19] Idilio Drago et al. “Inside Dropbox: Understanding Personal Cloud
Storage Services”. In: Proceedings of the 2012 ACM Conference on
Internet Measurement Conference. IMC ’12. Boston, Massachusetts,
USA: ACM, 2012, pp. 481–494. isbn: 978-1-4503-1705-4. doi: 10 .

1145/2398776.2398827. url: http://doi.acm.org.proxy- um.

researchport.umd.edu/10.1145/2398776.2398827.

[20] Google Inc. Maximum Attachment Size. 2016. url: https://support.
google.com/mail/answer/6584?topic=1517 (visited on 01/12/2016).

[21] Yahoo! Inc. Message Size Limit. url: https://help.yahoo.com/kb/
SLN5673.html (visited on 01/12/2016).

[22] Microsoft Inc. “Attachment Size Exceeds the Allowable Limit” Error
When You Add a Large Attachment to an Email Message in Outlook
2010. 2013. url: https://support.microsoft.com/en- us/kb/

2222370 (visited on 01/12/2016).

[23] Google Inc. Gmail now has over 900M users! Thanks for helping us
get there. 2015. url: https://plus.google.com/+Gmail/posts/
AjktcDswdKh (visited on 01/15/2016).

[24] Susan Kuchinskas. Endless Gmail Storage. 2005. url: http://www.
internetnews.com/xSP/article.php/3494491 (visited on 01/15/2016).

[25] Google Inc. Free Storage and Email from Google. 2016. url: https:
//www.google.com/intl/en_us/mail/help/about.html (visited on
01/15/2016).

17

http://www.exit109.com/~jeremy/news/yenc.html
http://www.exit109.com/~jeremy/news/yenc.html
https://tools.ietf.org/pdf/rfc3030
https://tools.ietf.org/pdf/rfc3030
https://tools.ietf.org/pdf/rfc2487
https://tools.ietf.org/pdf/rfc2595
https://tools.ietf.org/pdf/rfc4880
http://dx.doi.org/10.1145/2398776.2398827
http://dx.doi.org/10.1145/2398776.2398827
http://doi.acm.org.proxy-um.researchport.umd.edu/10.1145/2398776.2398827
http://doi.acm.org.proxy-um.researchport.umd.edu/10.1145/2398776.2398827
https://support.google.com/mail/answer/6584?topic=1517
https://support.google.com/mail/answer/6584?topic=1517
https://help.yahoo.com/kb/SLN5673.html
https://help.yahoo.com/kb/SLN5673.html
https://support.microsoft.com/en-us/kb/2222370
https://support.microsoft.com/en-us/kb/2222370
https://plus.google.com/+Gmail/posts/AjktcDswdKh
https://plus.google.com/+Gmail/posts/AjktcDswdKh
http://www.internetnews.com/xSP/article.php/3494491
http://www.internetnews.com/xSP/article.php/3494491
https://www.google.com/intl/en_us/mail/help/about.html
https://www.google.com/intl/en_us/mail/help/about.html

[26] Microsoft Inc. Microsoft by the Numbers. 2014. url: http://news.
microsoft.com/bythenumbers/ms_numbers.pdf (visited on 01/15/2016).

[27] Microsoft Inc. Storage Limits in Outlook.com. url: http://windows.
microsoft.com/en-CA/windows/outlook/email-storage-limits

(visited on 01/15/2016).

[28] Dan Frommer. Google is Stealing Away Microsoft’s Future Corporate
Customers. 2014. url: http://qz.com/243321/google-is-stealing-
away-microsofts-future-corporate-customers/ (visited on 01/16/2016).

18

http://news.microsoft.com/bythenumbers/ms_numbers.pdf
http://news.microsoft.com/bythenumbers/ms_numbers.pdf
http://windows.microsoft.com/en-CA/windows/outlook/email-storage-limits
http://windows.microsoft.com/en-CA/windows/outlook/email-storage-limits
http://qz.com/243321/google-is-stealing-away-microsofts-future-corporate-customers/
http://qz.com/243321/google-is-stealing-away-microsofts-future-corporate-customers/

	Introduction
	Email as a General-Purpose Storage Service
	Usenet as a Precedent
	Protocol and Topological Similarities
	Usage Similarities

	Advantages over NNTP
	Advantages over CSPs
	Security
	Extensibility and Transparency

	Architecture
	Filesystem Primitives
	Types
	Files
	Directories

	Operations
	Filesystem Creation
	Directory Creation
	Directory Deletion
	File Creation
	File Deletion
	Indexing

	Applying EMFS to Common ESPs
	ESP Statistics
	Google Gmail
	Microsoft Outlook
	Shared Characteristics

	Potential Hurdles and Concerns
	Countermeasures by ESPs
	Sharing Between Users

	Conclusions
	Afternotes
	Future Directions
	Implementation

