
1Empire Hacking | Windows codesigning without Windows: taming the root of trust

2Empire Hacking | Windows codesigning without Windows: taming the root of trust

Windows codesigning without
Windows: taming the root of trust
William Woodruff

3Empire Hacking | Windows codesigning without Windows: taming the root of trust

● quick introduction to codesigning
● codesigning on windows
● codesigning on windows…without windows

○ oops, no trust

● taming the root of trust
○ introducing windows-ctl

agenda

4Empire Hacking | Windows codesigning without Windows: taming the root of trust

● in the bad old days, software came on
physical media w/ holographic stickers

● “legitimate” copies were sold in big box stores
and had holographic stickers, tamper-evident
packaging, proofs of purchase, etc.

● only a few brave souls dared to distribute
(much less charge for) non-trivial software
over the internet

codesigning?

5Empire Hacking | Windows codesigning without Windows: taming the root of trust

codesigning?
● distributing code over the internet is way

cheaper, easier, and less stressful
● …but introduces security problems:

○ unencrypted networks (HTTP, FTP)
○ untrustworthy websites (fake vendors, ad/spyware)
○ policy enforcement ($corp employees may not use $app)
○ IR and triage (whose mans binary is this?)

● OS vendors recognized a need (and business line)
for codesigning

6Empire Hacking | Windows codesigning without Windows: taming the root of trust

● every piece of software comes with a
digital signature
○ cryptographic proof that someone (the private key

holder) signed for the software
○ anybody with the public key can verify the signature

● the public (verifying) key must be available
for use on the client machine
○ how do we get the public key to the client without

using the same untrusted channel?

codesigning?

7Empire Hacking | Windows codesigning without Windows: taming the root of trust

● chicken-and-egg problem: we can’t distribute the public keys with the
signature, because anybody can strip them off and add their own
○ …and we also can’t bake them directly into the OS or platform, because not all software

vendors are known ahead of time

● …we need a public key infrastructure (PKI): an ecosystem of policies and
procedures that allows us to:
○ verify and rotate public keys
○ revoke keys that are compromised or insecure (e.g. keysizes too small for modern crypto)
○ audit and control who issues valid signatures

“just add more keys until it works”

8Empire Hacking | Windows codesigning without Windows: taming the root of trust

● authenticode is Microsoft’s code PKI for Windows, with:
○ a digital signature container format, built on PKCS#7;
○ an X.509 certificate and issuing Certificate Authority ecosystem, made up of

vendors (Comodo, etc.);
○ an ultimate root Certificate Authority for the issuing CAs, held offline by

Microsoft themselves;

● Microsoft distributes a trust bundle with Windows that
contains the root CA certificate and some issuing CA certs
○ Windows Update periodically updates the trust bundle

codesigning on Windows: authenticode

https://learn.microsoft.com/en-us/windows-hardware/drivers/install/authenticode
https://www.rfc-editor.org/rfc/rfc2315
https://en.wikipedia.org/wiki/X.509

9Empire Hacking | Windows codesigning without Windows: taming the root of trust

● authenticode digital signatures are baked into Windows executables
○ referenced in the “optional” data directory table, under the “attribute certificate table”
○ certificate table can contain multiple entries, each of which has a length, revision, type, and

the actual “certificate” body
○ the “certificate” is actually a custom PKCS#7 SignedData, containing a custom detached

signature, certificates (needed to chain against the trust root), and an optional PKCS#9
counter-signature from an RFC 3161 time stamping authority

authenticode: implementation details

10Empire Hacking | Windows codesigning without Windows: taming the root of trust

● authenticode is 99% standard
PKCS#7; the only nonstandard bit is
the signed material
○ stored in SpcIndirectDataContent, which

is a MS-custom PKCS#7 ContentInfo payload
○ boils down to a digest of most of the

executable being signed (minus the parts
that are modified by signature inclusion)

● GitHub: trailofbits/uthenticode

μthenticode: authenticode without windows

https://github.com/trailofbits/uthenticode

11Empire Hacking | Windows codesigning without Windows: taming the root of trust

● to verify, we extract the body of the SpcIndirectDataContent and
pass it into PKCS7_verify (ugh) as the signed data

● …we also have to cross-check the digest in SpcIndirectDataContent
against our own computed digest for the PE, to make sure someone
hasn’t put a valid signature in an unrelated file.

μthenticode: authenticode without windows

12Empire Hacking | Windows codesigning without Windows: taming the root of trust

● μthenticode has a major deficiency: it doesn’t have access to the system
trust store, so any signature verification it does isn’t chained back to an
authoritative root of trust

● rephrased: an attacker can put any signature + certificate they control in
the authenticode payload, and μthenticode will happily verify it

● arguably a non-issue since the binary as run will still go through
Windows’ own verification (and fail), but it isn’t ideal from a
completeness perspective
○ can we do better?

trust is everything

13Empire Hacking | Windows codesigning without Windows: taming the root of trust

to do better, we need to:

1. retrieve the Windows trust store for ourselves;
2. parse whatever format it’s in;
3. re-emit it as a “standard” bundle of PEM’d X.509 certs;
4. load the bundle back into an OpenSSL X509_STORE (ugh)
5. use the store during PKCS7_Verify

μthenticode is in C++ but we can do 1-3 in Rust because it’s a separate output!
how hard could it be?

untangling the root of trust

14Empire Hacking | Windows codesigning without Windows: taming the root of trust

Windows Update has a hardcoded URL for fetching the root of trust:

http://www.download.windowsupdate.com/msdownload/update/v3/static/trustedr/en/authrootstl.cab

untangling the root of trust

http://www.download.windowsupdate.com/msdownload/update/v3/static/trustedr/en/authrootstl.cab

15Empire Hacking | Windows codesigning without Windows: taming the root of trust

authroot.stl is another custom signed
PKCS#7 blob, with a ContentType of
1.3.6.1.4.1.311.10.1

unlike the executable format, not really
documented anywhere…

from oidref:

untangling the root of trust

https://oidref.com/1.3.6.1.4.1.311.10.1

16Empire Hacking | Windows codesigning without Windows: taming the root of trust

several days later…

“[MS-CAESO]: Certificate Autoenrollment
System Overview,” page 52

full ASN.1 definitions! no need to
bushwack through DER!!

boils down to a “Certificate Trust List,” in
which each TrustedSubject has a
SubjectIdentifier…

…but no actual certs anywhere to be
seen??

untangling the root of trust

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/WinArchive/%5BMS-CAESO%5D.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/WinArchive/%5BMS-CAESO%5D.pdf

17Empire Hacking | Windows codesigning without Windows: taming the root of trust

18Empire Hacking | Windows codesigning without Windows: taming the root of trust

19Empire Hacking | Windows codesigning without Windows: taming the root of trust

untangling the root of trust
SubjectIdentifier is just SHA1(cert_der), and uniquely identifies each
trust root member on MS’s update servers:

http://www.download.windowsupdate.com/msdownload/update/v3/static/trustedr/en/HASH.crt

20Empire Hacking | Windows codesigning without Windows: taming the root of trust

untangling the root of trust
final step is transformation from individual DER certs to a PEM bundle

turned out to be an excellent stress test for Rust’s x509-cert due to all kinds
of garbage in the MS trust root:

● negative serial numbers (s/o to Agencia Catalana de Certificacio)
● oversized serial numbers (s/o to Krajowa Izba Rozliczeniowa S.A.)

21Empire Hacking | Windows codesigning without Windows: taming the root of trust

we turned this entire adventure into a reusable Rust library + CLI:

https://github.com/trailofbits/windows-ctl

(not yet available on crates due to unversioned RustCrypto patches)

next steps:

● periodically re-build the trust bundle in CI;
● embed in μthenticode for full chain signature verification!

wrapup

https://github.com/trailofbits/windows-ctl

22Empire Hacking | Windows codesigning without Windows: taming the root of trust

resources:

● Verifying Windows binaries, without Windows (ToB blog, 2020)
● trailofbits/uthenticode (OSS Authenticode implementation)
● trailofbits/windows-ctl (OSS Windows trust root generation)
● RustCrypto/formats (link to closed PRs for DER, X.509 patches)
● [MS-CAESO] (2013 rev)

contact:

● william@trailofbits.com
● @yossarian@infosec.exchange

thank you!

https://blog.trailofbits.com/2020/05/27/verifying-windows-binaries-without-windows/
https://github.com/trailofbits/uthenticode
https://github.com/trailofbits/windows-ctl
https://github.com/RustCrypto/formats/pulls?q=is%3Apr+is%3Aclosed+author%3Awoodruffw
https://yossarian.net/junk/hard_to_find/ms-caeso-v20130625.pdf
mailto:william@trailofbits.com

