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it’s 6PM: do you know what 
your builds are doing?
William Woodruff
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hello

● william woodruff
○ engineering director @ trail of bits
○ open source team, working primarily on OSS projects: 

LLVM, Homebrew, PyPI, pip-audit, etc.
○ @yossarian@infosec.exchange

● Trail of Bits
○ ~150 person cybersecurity auditing and engineering 

consultancy 
○ specialities: cryptography, compilers, program 

analysis, “supply chain”, general high assurance 
software development

https://infosec.exchange/@yossarian
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let’s talk about build systems
● (almost) nobody likes build systems

○ flakey, crufty, fragile, typically break when you need 
them, indeterminate build states, etc.

● (almost) nobody uses build systems 
correctly
○ typical development flow for build system engineering 

is to hit it until it runs locally
○ …then hit it some more on each other machine it 

needs to run on
● billions of dollars in fake money VC capital 

spent on killing build systems
○ so far this has resulted in more build systems

build systems
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why are build systems so hard and opaque?
● conceptually: build systems are pure functions that map an input 

space (sources, dependencies, etc.) into an output space (binaries, 
tarballs, etc.)

● in reality: build systems mash a bunch of mutable state around in a 
shared global namespace (the filesystem)
○ programmers care about performance, so we throw multiprocessing in there for good 

measure

● tools themselves don’t help: native toolchains have global header, 
linker, etc. paths, all kinds of special “escape hatches” to help stressed 
engineers get around their problems and back to work

build systems
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sometimes we want to instrument builds
● …for caching: we want to instrument builds to replace or cache steps that 

don’t need to be repeated
○ See: ccache, sccache

● …for profiling: we want to identify the slowest parts of the build for 
refactoring, replacing, or caching (see above)

● …for rewriting: we want to programmatically modify the build’s behavior (e.g. 
debug info, opt level) without playing find-the-flag in 16 different Makefiles

● …for static analysis: we want to programmatically modify the program itself 
to make it more amenable to analysis (e.g. rewriting the source on each step)

● …for security: we want to see if the build itself is vulnerable or makes its 
outputs vulnerable

build system instrumentation

https://ccache.dev/
https://github.com/mozilla/sccache
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…for security?

● builds can produce insecure programs, especially in non-obvious ways:
○ what’s wrong with this flag? -DFORTIFY_SOURCE=2

→  -D_FORTIFY_SOURCE=2
○ what’s wrong with this line? -Wall @extra.txt

→ -Wall -w (expanded from extra.txt, helpfully added by your build engineer)

● builds can produce contextually incorrect programs:
○ release builds containing debug symbols (ask MS how they feel about this one)

● builds can themselves be insecure and open to manipulation
○ “helpfully” pulling dependencies from the ‘net, enabling local features + unsafe 

configurations in production, … 

● we’d like to be able to detect these kinds of flaws and weaknesses 
automatically, and exploit prevent them

build system instrumentation
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build instrumentation: how hard could it be?
● large diversity of build and “metabuild” systems

○ Make, CMake, Bazel, Cargo, Docker, your coworker’s bash scripts
● large diversity of compiler and tool frontends

○ clang, GCC, MSVC, ICC, wrappers around ld, etc.
○ each has a large CLI with complex argument semantics for reasons™ 

● large diversity of compiler-adjacent tooling
○ lots of builds directly invoke cpp, as, ar, ld, install, strip, etc.

■ each of these (again) has a large and poorly-defined CLI
● each of these needs to be modeled precisely and accurately, 

because build systems will use them to their weirdest 
extents
○ did you know that you can -D “FOO(X)=X + 1”?
○ or: clang++ -x c lol.c -x c++ lmao.cpp

build instrumentation
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build instrumentation with blight
● blight is a framework (and CLI tool) we wrote for 

instrumenting arbitrary build systems
○ (meta)-build agnostic: doesn’t care how it’s run (as long as you run it)

● minimally invasive: no funny business with strace or 
LD_PRELOAD
○ contrast: bear (LD_PRELOAD) and build-bom (strace)

● high-fidelity models of each “standard” build tool
○ CC, CXX, AS, AR, etc.

● a high level “actions” API for arbitrary instrumentation
○ e.g. “each time the build invokes CC, replace it with CXX”
○ batteries-included actions for profiling, recording, basic rewrites

blight

https://github.com/rizsotto/Bear
https://github.com/travitch/build-bom
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taming misbehaving builds
● nice builds: ones that inherit $CC, etc., from the environment, or allow 

environment overrides
○ modern-ish build and metabuild systems (like CMake, Meson)

● not so nice builds: ones that hardcode gcc, clang, etc.
○ lots of handwritten Makefiles
○ blight does “$PATH swizzling” to place fake gcc, etc. shims on $PATH

■ i made this term up because i didn’t know what to call it
● very naughty builds: hardcoding or code-genning gcc-X, clang-X, etc.

○ lots of build.sh and autoconf stuff
○ blight can detect most of these, but some might slip through

● unworkable: builds that hardcode the whole path (e.g. /usr/bin/gcc)
○ there’s very little we can do about this without being more invasive; thankfully they aren’t very 

common

blight
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build instrumentation with blight

blight
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build instrumentation with blight

blight

python -m pip install blight
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concluding thoughts

wrapup

● anything can be a program analysis/instrumentation problem if you try 
hard enough

● we built blight to solve a single problem on a research project, but it’s 
generic enough to be a building block for all kinds of build 
instrumentation tools. some ideas:
○ a tracking/burndown progress meter for builds that don’t natively support progress
○ a bitcode/IR collection layer a la WLLVM/GLLVM

● small QoL API features make annoying analysis tasks less annoying
○ blight does a ludicrous amount of modeling and wrapping so that users don’t have to 

handle @file or -DFOO -UFOO -DFOO

https://github.com/travitch/whole-program-llvm
https://github.com/SRI-CSL/gllvm
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thanks!
these slides will be available at:

https://yossarian.net/publications#osiris-2023

links:

GitHub: trailofbits/blight

Blog post: High-fidelity build instrumentation with blight

Docs: trailofbits.github.io/blight

PyPI: pypi.org/p/blight

the end of the talk

https://yossarian.net/publications#osiris-2023
https://github.com/trailofbits/blight
https://blog.trailofbits.com/2020/11/25/high-fidelity-build-instrumentation-with-blight/
https://trailofbits.github.io/blight
https://pypi.org/project/blight/

