T
LT

B'7S

It's 6PM: do you know what
your bullds are domg’?

William Woodruff

DO YOU X
KNOW WHERE

YOUR
AR} CHILDREN

:

hello

e william woodruff
o engineering director @ trail of bits

o open source team, working primarily on OSS projects:

LLVM, Homebrew, PyPI, pip-audit, etc.
o (@yossarian@infosec.exchange

e Trail of Bits

o ~150 person cybersecurity auditing and engineering
consultancy

o specialities: cryptography, compilers, program
analysis, “supply chain”, general high assurance
software development

OSIRIS Lab Colloquium | May 2023

https://infosec.exchange/@yossarian

build systems

let’s talk about build systems

(almost) nobody likes build systems
o flakey, crufty, fragile, typically break when you need
them, indeterminate build states, etc.
(almost) nobody uses build systems

correctly
o typical development flow for build system engineering
is to hit it until it runs locally
o ..then hitit some more on each other machine it
needs to run on

billions of dollars in fake-meney VC capital

spent on killing build systems
o so far this has resulted in more build systems

OSIRIS Lab Colloquium | May 2023

THEN WELL'SHIP YOUR MACHINE

\f‘ﬂ-

!-ﬂnvw_w "’ e =

build systems

why are build systems so hard and opaque?

e conceptually: build systems are pure functions that map an input
space (sources, dependencies, etc.) into an output space (binaries,
tarballs, etc.)

e inreality: build systems mash a bunch of mutable state around in a

shared global namespace (the filesystem)

o programmers care about performance, so we throw multiprocessing in there for good
measure

e tools themselves don’t help: native toolchains have global header,
linker, etc. paths, all kinds of special “escape hatches” to help stressed
engineers get around their problems and back to work

OSIRIS Lab Colloquium | May 2023 5

sometimes we want to instrument builds

..for caching: we want to instrument builds to replace or cache steps that

don’t need to be repeated
o See: ccache, sccache

..for profiling: we want to identify the slowest parts of the build for
refactoring, replacing, or caching (see above)

..for rewriting: we want to programmatically modify the build’s behavior (e.g.
debug info, opt level) without playing find-the-flag in 16 different Makefiles
..for static analysis: we want to programmatically modify the program itself
to make it more amenable to analysis (e.g. rewriting the source on each step)
..for security: we want to see if the build itself is vulnerable or makes its
outputs vulnerable

https://ccache.dev/
https://github.com/mozilla/sccache

build system instrumentation

.for security?

e builds can produce insecure programs, especially in non-obvious ways:
o what's wrong with this flag? ~-DFORTIFY_SOURCE=2
— -D_FORTIFY_SOURCE=2
o what’s wrong with this line? -Wall @extra.txt
— -Wall -w(expanded from extra.txt, helpfully added by your build engineer)
e builds can produce contextually incorrect programs:
o release builds containing debug symbols (ask MS how they feel about this one)
e builds can themselves be insecure and open to manipulation
o “helpfully” pulling dependencies from the ‘net, enabling local features + unsafe
configurations in production, ...

e we'd like to be able to detect these kinds of flaws and weaknesses
automatically, and expleit prevent them

OSIRIS Lab Colloquium | May 2023 7

&

build instrumentation: how hard could it be?

e large diversity of build and “metabuild” systems

o Make, CMake, Bazel, Cargo, Docker, your coworker's bash scripts
e large diversity of compiler and tool frontends

o clang, GCC, MSVC, ICC, wrappers around 1d, etc.

o each has a large CLI with complex argument semantics for reasons™
e large diversity of compiler-adjacent tooling

o lots of builds directly invoke cpp, as, ar, 1d, install, strip, etc.

Hahahaha

e each of these needs to be modeled precisely and accurately,
because build systems will use them to their weirdest

extents
o did you know that you can -D “FO0(X)=X + 1"?
o or.clang++ -x ¢ lol.c -x c++ lmao.cpp

This sucks, man.

blight

build instrumentation with blight

e blightisaframework (and CLI tool) we wrote for
instrumenting arbitrary build systems
o (meta)-build agnostic: doesn’t care how it's run (as long as you run it)
e minimally invasive: no funny business with strace or
LD_PRELOAD
o contrast: bear (LD_PRELOAD) and build-bom (strace)
e high-fidelity models of each “standard” build tool
o CC, CXX, AS, AR, etc.

e a high level “actions” API for arbitrary instrumentation
o e.g. "each time the build invokes CC, replace it with CXX”
o batteries-included actions for profiling, recording, basic rewrites

OSIRIS Lab Colloquium | May 2023 9

&

https://github.com/rizsotto/Bear
https://github.com/travitch/build-bom

blight

taming misbehaving builds

nice builds: ones that inherit SCC, etc., from the environment, or allow

environment overrides
o modern-ish build and metabuild systems (like CMake, Meson)
not so nice builds: ones that hardcode gcc, clang, etc.

o lots of handwritten Makefiles
o blight does “SPATH swizzling” to place fake gcc, etc. shims on SPATH
m i made this term up because i didn't know what to call it

very naughty builds: hardcoding or code-genning gcc-X, clang-X, etc.

o lots of build.sh and autoconf stuff
o blight can detect most of these, but some might slip through

unworkable: builds that hardcode the whole path (e.g. /usr/bin/gcc)
o there’s very little we can do about this without being more invasive; thankfully they aren’t very
common

OSIRIS Lab Colloquium | May 2023 10

blight

build instrumentation with blight

class Lint(CompilerAction):
def before_run(self, tool: CompilerTool) -> None:

for name, _ in tool.defines:
if name == "FORTIFY_SOURCE":
logger.warning("found -DFORTIFY_SOURCE; you probably meant:
-D_FORTIFY_SOURCE")

'i!

OSIRIS Lab Colloquium | May 2023 11

blight
build instrumentation with blight
python -m pip install blight

blight

$ blight-exec --action Lint --guess-wrapped --swizzle-path \
cc -- -D FORTIFY_SOURCE=2 -

WARNING:blight.actions.lint:found -DFORTIFY_SOURCE; you probably meant:

$ blight-exec --action Record --guess-wrapped --swizzle-path \
make -- -j

OSIRIS Lab Colloquium | May 2023

-D_FORTIFY_SOURCE

wrapup

concluding thoughts

e anything can be a program analysis/instrumentation problem if you try
hard enough

e webuiltblight to solve a single problem on a research project, but it's
generic enough to be a building block for all kinds of build

instrumentation tools. some ideas:

o atracking/burndown progress meter for builds that don’t natively support progress
o a bitcode/IR collection layer a la WLLVM/GLLVM

e small QoL API features make annoying analysis tasks less annoying

o blight does a ludicrous amount of modeling and wrapping so that users don't have to
handle @file or -DFO0 -UFOO -DFO0O

OSIRIS Lab Colloquium | May 2023 13

H

https://github.com/travitch/whole-program-llvm
https://github.com/SRI-CSL/gllvm

the end of the talk

thanks!

these slides will be available at:

https://yossarian.net/publications#osiris-2023

links:

GitHub: trailofbits/blight

Blog post: High-fidelity build instrumentation with blight

Docs: trailofbits.github.io/blight

PyPI: pypi.org/p/blight

OSIRIS Lab Colloquium | May 2023

https://yossarian.net/publications#osiris-2023
https://github.com/trailofbits/blight
https://blog.trailofbits.com/2020/11/25/high-fidelity-build-instrumentation-with-blight/
https://trailofbits.github.io/blight
https://pypi.org/project/blight/

