
1OSIRIS Lab Colloquium     |     May 2023



2OSIRIS Lab Colloquium     |     May 2023

it’s 6PM: do you know what 
your builds are doing?
William Woodruff



3OSIRIS Lab Colloquium     |     May 2023

hello

● william woodruff
○ engineering director @ trail of bits
○ open source team, working primarily on OSS projects: 

LLVM, Homebrew, PyPI, pip-audit, etc.
○ @yossarian@infosec.exchange

● Trail of Bits
○ ~150 person cybersecurity auditing and engineering 

consultancy 
○ specialities: cryptography, compilers, program 

analysis, “supply chain”, general high assurance 
software development

https://infosec.exchange/@yossarian


4OSIRIS Lab Colloquium     |     May 2023

let’s talk about build systems
● (almost) nobody likes build systems

○ flakey, crufty, fragile, typically break when you need 
them, indeterminate build states, etc.

● (almost) nobody uses build systems 
correctly
○ typical development flow for build system engineering 

is to hit it until it runs locally
○ …then hit it some more on each other machine it 

needs to run on
● billions of dollars in fake money VC capital 

spent on killing build systems
○ so far this has resulted in more build systems

build systems



5OSIRIS Lab Colloquium     |     May 2023

why are build systems so hard and opaque?
● conceptually: build systems are pure functions that map an input 

space (sources, dependencies, etc.) into an output space (binaries, 
tarballs, etc.)

● in reality: build systems mash a bunch of mutable state around in a 
shared global namespace (the filesystem)
○ programmers care about performance, so we throw multiprocessing in there for good 

measure

● tools themselves don’t help: native toolchains have global header, 
linker, etc. paths, all kinds of special “escape hatches” to help stressed 
engineers get around their problems and back to work

build systems



6OSIRIS Lab Colloquium     |     May 2023

sometimes we want to instrument builds
● …for caching: we want to instrument builds to replace or cache steps that 

don’t need to be repeated
○ See: ccache, sccache

● …for profiling: we want to identify the slowest parts of the build for 
refactoring, replacing, or caching (see above)

● …for rewriting: we want to programmatically modify the build’s behavior (e.g. 
debug info, opt level) without playing find-the-flag in 16 different Makefiles

● …for static analysis: we want to programmatically modify the program itself 
to make it more amenable to analysis (e.g. rewriting the source on each step)

● …for security: we want to see if the build itself is vulnerable or makes its 
outputs vulnerable

build system instrumentation

https://ccache.dev/
https://github.com/mozilla/sccache


7OSIRIS Lab Colloquium     |     May 2023

…for security?

● builds can produce insecure programs, especially in non-obvious ways:
○ what’s wrong with this flag? -DFORTIFY_SOURCE=2

→  -D_FORTIFY_SOURCE=2
○ what’s wrong with this line? -Wall @extra.txt

→ -Wall -w (expanded from extra.txt, helpfully added by your build engineer)

● builds can produce contextually incorrect programs:
○ release builds containing debug symbols (ask MS how they feel about this one)

● builds can themselves be insecure and open to manipulation
○ “helpfully” pulling dependencies from the ‘net, enabling local features + unsafe 

configurations in production, … 

● we’d like to be able to detect these kinds of flaws and weaknesses 
automatically, and exploit prevent them

build system instrumentation



8OSIRIS Lab Colloquium     |     May 2023

build instrumentation: how hard could it be?
● large diversity of build and “metabuild” systems

○ Make, CMake, Bazel, Cargo, Docker, your coworker’s bash scripts
● large diversity of compiler and tool frontends

○ clang, GCC, MSVC, ICC, wrappers around ld, etc.
○ each has a large CLI with complex argument semantics for reasons™ 

● large diversity of compiler-adjacent tooling
○ lots of builds directly invoke cpp, as, ar, ld, install, strip, etc.

■ each of these (again) has a large and poorly-defined CLI
● each of these needs to be modeled precisely and accurately, 

because build systems will use them to their weirdest 
extents
○ did you know that you can -D “FOO(X)=X + 1”?
○ or: clang++ -x c lol.c -x c++ lmao.cpp

build instrumentation



9OSIRIS Lab Colloquium     |     May 2023

build instrumentation with blight
● blight is a framework (and CLI tool) we wrote for 

instrumenting arbitrary build systems
○ (meta)-build agnostic: doesn’t care how it’s run (as long as you run it)

● minimally invasive: no funny business with strace or 
LD_PRELOAD
○ contrast: bear (LD_PRELOAD) and build-bom (strace)

● high-fidelity models of each “standard” build tool
○ CC, CXX, AS, AR, etc.

● a high level “actions” API for arbitrary instrumentation
○ e.g. “each time the build invokes CC, replace it with CXX”
○ batteries-included actions for profiling, recording, basic rewrites

blight

https://github.com/rizsotto/Bear
https://github.com/travitch/build-bom


10OSIRIS Lab Colloquium     |     May 2023

taming misbehaving builds
● nice builds: ones that inherit $CC, etc., from the environment, or allow 

environment overrides
○ modern-ish build and metabuild systems (like CMake, Meson)

● not so nice builds: ones that hardcode gcc, clang, etc.
○ lots of handwritten Makefiles
○ blight does “$PATH swizzling” to place fake gcc, etc. shims on $PATH

■ i made this term up because i didn’t know what to call it
● very naughty builds: hardcoding or code-genning gcc-X, clang-X, etc.

○ lots of build.sh and autoconf stuff
○ blight can detect most of these, but some might slip through

● unworkable: builds that hardcode the whole path (e.g. /usr/bin/gcc)
○ there’s very little we can do about this without being more invasive; thankfully they aren’t very 

common

blight



11OSIRIS Lab Colloquium     |     May 2023

build instrumentation with blight

blight



12OSIRIS Lab Colloquium     |     May 2023

build instrumentation with blight

blight

python -m pip install blight



13OSIRIS Lab Colloquium     |     May 2023

concluding thoughts

wrapup

● anything can be a program analysis/instrumentation problem if you try 
hard enough

● we built blight to solve a single problem on a research project, but it’s 
generic enough to be a building block for all kinds of build 
instrumentation tools. some ideas:
○ a tracking/burndown progress meter for builds that don’t natively support progress
○ a bitcode/IR collection layer a la WLLVM/GLLVM

● small QoL API features make annoying analysis tasks less annoying
○ blight does a ludicrous amount of modeling and wrapping so that users don’t have to 

handle @file or -DFOO -UFOO -DFOO

https://github.com/travitch/whole-program-llvm
https://github.com/SRI-CSL/gllvm


14OSIRIS Lab Colloquium     |     May 2023

thanks!
these slides will be available at:

https://yossarian.net/publications#osiris-2023

links:

GitHub: trailofbits/blight

Blog post: High-fidelity build instrumentation with blight

Docs: trailofbits.github.io/blight

PyPI: pypi.org/p/blight

the end of the talk

https://yossarian.net/publications#osiris-2023
https://github.com/trailofbits/blight
https://blog.trailofbits.com/2020/11/25/high-fidelity-build-instrumentation-with-blight/
https://trailofbits.github.io/blight
https://pypi.org/project/blight/

