
1PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

2PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Securing your Package
Ecosystem with Trusted
Publishing
William Woodruff

3PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

● William Woodruff (william@trailofbits.com)
○ open source group engineering director @ trail of bits
○ long-term OSS contributor (Homebrew, LLVM, Python)

and maintainer (pip-audit, sigstore-python)
○ @yossarian@infosec.exchange

● Trail of Bits
○ ~150 person cybersecurity engineering and auditing

consultancy
○ specialities: cryptography, compilers, program analysis

research, “supply chain”, OSS package management,
general high assurance software development

Hello!
Introduction

mailto:william@trailofbits.com
https://infosec.exchange/@yossarian

4PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Some thank-yous
● This work wouldn’t have happened without Dustin Ingram and the

GOSST team’s vision for improving PyPI’s security!
● The other maintainers of PyPI (Donald, Ee, Mike) all reviewed this work

or otherwise made it possible
● Other members of PyPA for being early testers and ensuring a smooth

rollout
○ Special thanks to Sviatoslav Sydorenko

● PyCA maintainers (Paul and Alex) for being guinea pigs and providing
early feedback on usability

5PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

This talk
Act 1: PyPI and Trusted Publishing

● Quick intro to PyPI and Python package publishing
● Making PyPI publishing more secure with Trusted Publishing
● Outcomes so far

Act 2: Trusted Publishing, 💖for you💖
● Explaining and communicating to end users (package uploaders)
● Implementation tips and tricks (from our experience)
● Knock-on effects and benefits

6PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Background: PyPI
● Pronounced 🥧-🫛-👁
● The primary package index for the Python ecosystem

○ ~500K projects, ~5M releases, ~9M files, ~750K users (i.e. packagers)
○ ~20 billion downloads per month (August 2023)

● Rewritten in ~2017, security features added since
○ 2018/19: API tokens, TOTP and WebAuthn, security event logging for users and

projects
○ 2019/20: Malware scanning
○ 2020/21: Vulnerability feeds, GitHub secret scanning integration
○ 2022/23: Trusted publishing (you are here!)

7PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Publishing on PyPI: then and ~now
● < 2019: username/password authentication for uploads

👎 No credential separation: same user/pass could modify all projects under the same user!
■ As well as log into PyPI and do normal account admin things

👎 No straightforward revocation: compromise means full account recovery needed!
👎 No security events: attacker who steals creds can remain (relatively) stealthy!

● >= 2019: Macaroon-based API tokens
👍 Configurable scopes (per-user, per-project)

■ Per-user means “all projects,” not “can modify the user’s profile”!
👍 Integrated into security events + GitHub secret scanning
👍 Backwards compatible with user/pass auth (no downstream tooling changes needed!)

API tokens are a major improvement; can we do even better?

8PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

For security:

● API token configuration is error prone (fatigue & overscoping)
○ We want something that doesn’t need to be manually configured or copy-pasted

into a CI/CD system!
● API token revocation is manual and brittle

○ We want something that doesn’t need revocation!
○ …without requiring constant rotation or other fatigue-inducing constraints!

● API tokens still “fail open”
○ An attacker with a stolen token can wait indefinitely to use it

■ Murphy’s law but for security: an empowered attacker will always strike at
the worst time

○ User-scoped tokens typically grow in scope over time
○ We want fewer passive attack vectors and the smallest viable credential scope!

What does “doing better than API tokens” look like?

9PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

For usability:

● API tokens are associated with users
○ Even when scoped to projects!
○ This causes logistical pains when a

project/repository changes owners
● Avoiding “chicken-and-egg” problems

○ API tokens are immutable + can’t be
scoped for a nonexistent project

○ To securely scope a token, users currently
have to less securely create the project
they’re trying to secure! Not great!

What does “doing better than API tokens” look like?

10PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Doing better with
✨OpenID Connect✨

Trusted Publishing

● CI/CD providers like GitHub support machine identities through OIDC
○ These credentials are strongly bound to the repository + workflow that made them
○ Can be verified by any third-party service using OIDC Discovery!

● OIDC credentials are short-lived + scoped to an intended audience
○ Fewer compromise opportunities + no domain contamination!
○ Service B won’t accept credentials made for Service A

● Already widely applied to other services (GH ←→ AWS, GCP, etc.)
○ Why not PyPI too?

11PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

OpenID Connect for PyPI publishing
The rough idea:

● Ahead of time: Users configure a trust relationship
between a specific OIDC provider (e.g. GitHub) and their
PyPI project
○ The trust relationship itself isn’t secret, so no potential leaks here!
○ For GitHub: user/repo slug, workflow name (e.g. release.yml),

optional environment name
○ We call this relationship the “trusted publisher”

● During publishing: OIDC provider creates an OIDC
credential
○ PyPI accepts that credential, verifies it, and exchanges it for a

short-lived PyPI API token scoped for the project
○ Package publishing (e.g. through twine) continues as normal, none

the wiser!

Trusted Publishing

12PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Trusted publishing: the bird’s-eye view
Trusted Publishing

13PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

What about nonexistent projects?
This first approach doesn’t solve the “chicken-and-egg”
problem with API tokens: the project still needs to exist
to register a trusted publisher to it!

We solve this with “pending publishers”: registered
similarly to a trusted publisher, but associated with a
user instead.

● Contains the name of the project that will be
created

● On first use, the project is created (in an empty
state) and the “pending” publisher is reified into a
full “trusted publisher”

Trusted Publishing

14PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Pending publishers: the bird’s-eye view
Trusted Publishing

15PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

With this scheme, we achieve all of our security goals:

✅ All credentials are temporary and self-expiring
✅ All credentials are minimally scoped (no user scopes)
✅ Users only perform configuration once (initial trusted setup)
✅ All configuration is over public information (no private metadata)
✅ No more chicken-and-egg (“pending” publishers transition seamlessly to full

publishers once used)

We also solve supply chain problems in the process:

✅ Flattening of state: the source repository itself becomes the “ground truth”
✅ Maintenance transitions: projects can transition maintainers without playing “who

owns the credential”

It works!
Trusted publishing

16PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Outcomes (so far)
2023-04-20: trusted publishing becomes generally available on PyPI

How are we doing, ~6 months later?

● ~4380 total projects configured to use trusted publishing
○ ~3080 (~70%) have published at least one release using a trusted publisher
○ Takeaway: PyPI users are proactively configuring trusted publishing!

● Critical projects: 272 configured to use trusted publishing
○ ~5.2% of all critical projects have a trusted publisher configured
○ 198 (~73%) have published at least one release using a trusted publisher

● Growth has been roughly linear:

https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/

17PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Zooming in on critical projects
~5.2% doesn’t sound great, until broken down by downloads!

● PyPI has ~6B downloads/week
● >25% of the top 25 projects are using trusted publishers:

○ urllib3, charset-normalizer, certifi, wheel, cryptography, click

● Adoption has generally skewed towards more popular packages,
and PyPI downloads follow a power-law distribution!
○ Even top packages show a power law: #1 has 9x as many downloads as #20

● Takeaway: each critical/popular project that switches helps
improve security across its entire dependency graph!
○ If you are the maintainer of a popular Python project, then consider switching!

18PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

part 2: trusted publishing,
💖for you💖
tips for other possible implementations

19PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Tip #1: the data model is unintuitive
“One trusted publisher per package, how hard could it be?”

Realities:
● Multiple logical projects live under the same logical publisher

○ Example: GitHub monorepo with multiple PyPI projects
● Multiple logical publishers are responsible for a single project

○ Example: Single PyPI project with multiple arch-specific publishing workflows
■ Users ideally wouldn’t do this, but we want to encourage adoption!

Conclusion: trusted publishing is actually many-many; this may have
surprising complexity implications for the ecosystem you’re adding it to!

Tips from PyPI’s implementation

20PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

21PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Tip #2: OIDC is very narrowly standardized
Tips from PyPI’s implementation

“They’re just JWTs under the hood, how different could they be?”

Realities:
Individual providers have wide latitude in claim availability/format
● Only basic things can be assumed to be universal: iss, exp, aud, etc.
● Each new provider needs to be carefully inspected to determine which parts of the

OIDC credential constitute sufficient trusted metadata
○ This requires in-depth knowledge of the provider’s internals/behavior, e.g. which users are entitled to run

GitHub workflows within a particular repository!
Conclusions:
● Adding new trusted publisher providers (GitLab, etc.) is time intensive; ecosystems

should prioritize the providers they see used the most (GitHub for PyPI)
● Supporting multiple providers = more data model complexity!

22PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

23PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Tip #2.5: OIDC varies wildly within IdPs

“Every trusted publisher through e.g. GitHub should look basically the same”
Realities:
● OIDC identities vary wildly even within a provider: GitHub has special

claims for reusable workflows, claims for different CI event types, etc.
○ Providers like to change their claims without telling anyone!

● Differences between these claims can’t be paved over without (1)
excluding some users or (2) ignoring some claims that might be
important!

Conclusion:
● Supporting every possible configuration of a trusted publisher is hard +

trying to do so opens up a lot of potential logic errors!

Tips from PyPI’s implementation

24PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

terrible!

25PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Tip #3: OIDC tokens are not API tokens
“An OIDC credential is basically an API token; I don’t need to do an exchange”

Reality: you can do this, but…
● OIDC credentials aren’t plugged into your preexisting AuthN/Z or

permissions/scopes; you’ll end up re-implementing a bunch of what you already
have (and reimplementation means more bugs)

● OIDC credentials are chonky contain all kinds of stuff you might not want to hold
onto for prolonged periods (user emails, other potential PII)

● IdPs can change expiration and other policies without notice; creating your own
temporary token makes you resilient to these changes!

Conclusion: Performing token exchange minimizes the amount of novel code needed;
reduces potential sources of PII; offers additional resilience against IdP changes.

Lessons from PyPI

26PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Tip #4: Words are hard
Lessons from PyPI

27PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Tip #5: It’s all worth it!
OIDC is complicated; trusted publishing’s model on top of it even more so.

But the user experience and security gains make it worth it:

● User feedback (once they understand it) is overwhelmingly positive
○ High demand for more trust relationships (e.g. reusable GitHub workflows)
○ High demand for additional IdPs (GitLab, CircleCI, GCP, BuildKite)
○ High demand for APIs and UI elements that expose trusted publishing status/metadata

● Adoption by critical projects is steadily advancing
○ …and is having a disproportionate impact on the entire ecosystem’s security

Lessons from PyPI

28PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

What comes next?
The same building blocks that give us
trusted publishing (OIDC, machine
identities) are also the building blocks
for build provenance and code
signing!

The goal: ecosystems that support
trusted publishing should find it
relatively easy to enable Sigstore for
codesigning.

The future

29PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

Takeaways
● Trusted publishing is a double win: both for security and for usability

○ The best kind of security improvements make users’ lives easier, not harder!
○ Cynically: the only kinds of security improvements that matter are the ones that engineers

want to use
● Trusted publishing is not tied to PyPI; other package indices can use the

same techniques and reap the same benefits!
○ We (Trail of Bits) would be thrilled to reapply our experience on PyPI to other ecosystems;

please come find me during the day and chat with me about it!
● Trusted publishing is a logical step towards our shared supply chain

goals: source and build provenance, code signing, generalized verifiable
attestations over software/dependency graphs

Conclusion

30PackagingCon 2023 | Securing your Package Ecosystem with Trusted Publishing

thank you!
● these slides will soon be available here:

https://yossarian.net/publications#packagingcon-2023

● resources:
○ docs.pypi.org/trusted-publishers: official PyPI documentation for trusted publishing
○ “Introducing ‘Trusted Publishers’”: official PyPI announcement post
○ "Trusted publishing: a new benchmark for packaging security": ToB’s writeup on trusted

publishing, threat modeling, etc.

● Contact:
○ william@trailofbits.com
○ @yossarian@infosec.exchange

end of the talk

https://yossarian.net/publications#packagingcon-2023
https://docs.pypi.org/trusted-publishers/
https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
https://blog.trailofbits.com/2023/05/23/trusted-publishing-a-new-benchmark-for-packaging-security/
mailto:william@trailofbits.com
https://infosec.exchange/@yossarian

