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● William Woodruff (william@trailofbits.com)
○ open source group engineering director @ trail of bits
○ long-term OSS contributor (Homebrew, LLVM, Python) 

and maintainer (pip-audit, sigstore-python)
○ @yossarian@infosec.exchange

● Trail of Bits 
○ ~150 person cybersecurity engineering and auditing 

consultancy
○ specialities: cryptography, compilers, program analysis 

research, “supply chain”, OSS package management, 
general high assurance software development

Hello!
Introduction

mailto:william@trailofbits.com
https://infosec.exchange/@yossarian
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Some thank-yous
● This work wouldn’t have happened without Dustin Ingram and the 

GOSST team’s vision for improving PyPI’s security!
● The other maintainers of PyPI (Donald, Ee, Mike) all reviewed this work 

or otherwise made it possible
● Other members of PyPA for being early testers and ensuring a smooth 

rollout
○ Special thanks to Sviatoslav Sydorenko

● PyCA maintainers (Paul and Alex) for being guinea pigs and providing 
early feedback on usability
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This talk
Act 1: PyPI and Trusted Publishing

● Quick intro to PyPI and Python package publishing
● Making PyPI publishing more secure with Trusted Publishing
● Outcomes so far

Act 2: Trusted Publishing, 💖for you💖
● Explaining and communicating to end users (package uploaders)
● Implementation tips and tricks (from our experience)
● Knock-on effects and benefits



6PackagingCon 2023      |     Securing your Package Ecosystem with Trusted Publishing

Background: PyPI
● Pronounced 🥧-🫛-👁
● The primary package index for the Python ecosystem

○ ~500K projects, ~5M releases, ~9M files, ~750K users (i.e. packagers)
○ ~20 billion downloads per month (August 2023)

● Rewritten in ~2017, security features added since
○ 2018/19: API tokens, TOTP and WebAuthn, security event logging for users and 

projects
○ 2019/20: Malware scanning
○ 2020/21: Vulnerability feeds, GitHub secret scanning integration
○ 2022/23: Trusted publishing (you are here!)
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Publishing on PyPI: then and ~now
● < 2019: username/password authentication for uploads

👎 No credential separation: same user/pass could modify all projects under the same user!
■ As well as log into PyPI and do normal account admin things

👎 No straightforward revocation: compromise means full account recovery needed!
👎 No security events: attacker who steals creds can remain (relatively) stealthy!

● >= 2019: Macaroon-based API tokens
👍 Configurable scopes (per-user, per-project)

■ Per-user means “all projects,” not “can modify the user’s profile”!
👍 Integrated into security events + GitHub secret scanning
👍 Backwards compatible with user/pass auth (no downstream tooling changes needed!)

API tokens are a major improvement; can we do even better?
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For security:

● API token configuration is error prone (fatigue & overscoping)
○ We want something that doesn’t need to be manually configured or copy-pasted 

into a CI/CD system!
● API token revocation is manual and brittle 

○ We want something that doesn’t need revocation!
○ …without requiring constant rotation or other fatigue-inducing constraints!

● API tokens still “fail open”
○ An attacker with a stolen token can wait indefinitely to use it

■ Murphy’s law but for security: an empowered attacker will always strike at 
the worst time

○ User-scoped tokens typically grow in scope over time
○ We want fewer passive attack vectors and the smallest viable credential scope!

What does “doing better than API tokens” look like?
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For usability:

● API tokens are associated with users
○ Even when scoped to projects!
○ This causes logistical pains when a 

project/repository changes owners
● Avoiding “chicken-and-egg” problems

○ API tokens are immutable + can’t be 
scoped for a nonexistent project

○ To securely scope a token, users currently 
have to less securely create the project 
they’re trying to secure! Not great!

What does “doing better than API tokens” look like?
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Doing better with
✨OpenID Connect✨

Trusted Publishing

● CI/CD providers like GitHub support machine identities through OIDC
○ These credentials are strongly bound to the repository + workflow that made them
○ Can be verified by any third-party service using OIDC Discovery!

● OIDC credentials are short-lived + scoped to an intended audience
○ Fewer compromise opportunities + no domain contamination!
○ Service B won’t accept credentials made for Service A

● Already widely applied to other services (GH ←→ AWS, GCP, etc.)
○ Why not PyPI too?
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OpenID Connect for PyPI publishing
The rough idea:

● Ahead of time: Users configure a trust relationship 
between a specific OIDC provider (e.g. GitHub) and their 
PyPI project
○ The trust relationship itself isn’t secret, so no potential leaks here!
○ For GitHub: user/repo slug, workflow name (e.g. release.yml), 

optional environment name
○ We call this relationship the “trusted publisher”

● During publishing: OIDC provider creates an OIDC 
credential
○ PyPI accepts that credential, verifies it, and exchanges it for a 

short-lived PyPI API token scoped for the project
○ Package publishing (e.g. through twine) continues as normal, none 

the wiser!

Trusted Publishing
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Trusted publishing: the bird’s-eye view
Trusted Publishing
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What about nonexistent projects?
This first approach doesn’t solve the “chicken-and-egg” 
problem with API tokens: the project still needs to exist 
to register a trusted publisher to it!

We solve this with “pending publishers”: registered 
similarly to a trusted publisher, but associated with a 
user instead.

● Contains the name of the project that will be 
created

● On first use, the project is created (in an empty 
state) and the “pending” publisher is reified into a 
full “trusted publisher”

Trusted Publishing
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Pending publishers: the bird’s-eye view
Trusted Publishing
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With this scheme, we achieve all of our security goals:

✅ All credentials are temporary and self-expiring
✅ All credentials are minimally scoped (no user scopes)
✅ Users only perform configuration once (initial trusted setup)
✅ All configuration is over public information (no private metadata)
✅ No more chicken-and-egg (“pending” publishers transition seamlessly to full 

publishers once used)

We also solve supply chain problems in the process:

✅ Flattening of state: the source repository itself becomes the “ground truth”
✅ Maintenance transitions: projects can transition maintainers without playing “who 

owns the credential”

It works!
Trusted publishing
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Outcomes (so far)
2023-04-20: trusted publishing becomes generally available on PyPI

How are we doing, ~6 months later?

● ~4380 total projects configured to use trusted publishing
○ ~3080 (~70%) have published at least one release using a trusted publisher
○ Takeaway: PyPI users are proactively configuring trusted publishing!

● Critical projects: 272 configured to use trusted publishing
○ ~5.2% of all critical projects have a trusted publisher configured
○ 198 (~73%) have published at least one release using a trusted publisher

● Growth has been roughly linear:

https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
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Zooming in on critical projects
~5.2% doesn’t sound great, until broken down by downloads!

● PyPI has ~6B downloads/week
● >25% of the top 25 projects are using trusted publishers:

○ urllib3, charset-normalizer, certifi, wheel, cryptography, click

● Adoption has generally skewed towards more popular packages, 
and PyPI downloads follow a power-law distribution!
○ Even top packages show a power law: #1 has 9x as many downloads as #20

● Takeaway: each critical/popular project that switches helps 
improve security across its entire dependency graph!
○ If you are the maintainer of a popular Python project, then consider switching!
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part 2: trusted publishing,  
💖for you💖
tips for other possible implementations
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Tip #1: the data model is unintuitive
“One trusted publisher per package, how hard could it be?”

Realities:
● Multiple logical projects live under the same logical publisher

○ Example: GitHub monorepo with multiple PyPI projects
● Multiple logical publishers are responsible for a single project

○ Example: Single PyPI project with multiple arch-specific publishing workflows
■ Users ideally wouldn’t do this, but we want to encourage adoption!

Conclusion: trusted publishing is actually many-many; this may have 
surprising complexity implications for the ecosystem you’re adding it to!

Tips from PyPI’s implementation



20PackagingCon 2023      |     Securing your Package Ecosystem with Trusted Publishing



21PackagingCon 2023      |     Securing your Package Ecosystem with Trusted Publishing

Tip #2: OIDC is very narrowly standardized
Tips from PyPI’s implementation

“They’re just JWTs under the hood, how different could they be?”

Realities:
Individual providers have wide latitude in claim availability/format
● Only basic things can be assumed to be universal: iss, exp, aud, etc.
● Each new provider needs to be carefully inspected to determine which parts of the 

OIDC credential constitute sufficient trusted metadata
○ This requires in-depth knowledge of the provider’s internals/behavior, e.g. which users are entitled to run 

GitHub workflows within a particular repository!
Conclusions:
● Adding new trusted publisher providers (GitLab, etc.) is time intensive; ecosystems 

should prioritize the providers they see used the most (GitHub for PyPI) 
● Supporting multiple providers = more data model complexity!
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Tip #2.5: OIDC varies wildly within IdPs

“Every trusted publisher through e.g. GitHub should look basically the same”
Realities:
● OIDC identities vary wildly even within a provider: GitHub has special 

claims for reusable workflows, claims for different CI event types, etc.
○ Providers like to change their claims without telling anyone!

● Differences between these claims can’t be paved over without (1) 
excluding some users or (2) ignoring some claims that might be 
important!

Conclusion:
● Supporting every possible configuration of a trusted publisher is hard + 

trying to do so opens up a lot of potential logic errors!

Tips from PyPI’s implementation
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terrible!
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Tip #3: OIDC tokens are not API tokens
“An OIDC credential is basically an API token; I don’t need to do an exchange”

Reality: you can do this, but…
● OIDC credentials aren’t plugged into your preexisting AuthN/Z or 

permissions/scopes; you’ll end up re-implementing a bunch of what you already 
have (and reimplementation means more bugs)

● OIDC credentials are chonky contain all kinds of stuff you might not want to hold 
onto for prolonged periods (user emails, other potential PII)

● IdPs can change expiration and other policies without notice; creating your own 
temporary token makes you resilient to these changes!

Conclusion: Performing token exchange minimizes the amount of novel code needed; 
reduces potential sources of PII; offers additional resilience against IdP changes.

Lessons from PyPI
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Tip #4: Words are hard
Lessons from PyPI
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Tip #5: It’s all worth it!
OIDC is complicated; trusted publishing’s model on top of it even more so.

But the user experience and security gains make it worth it:

● User feedback (once they understand it) is overwhelmingly positive
○ High demand for more trust relationships (e.g. reusable GitHub workflows)
○ High demand for additional IdPs (GitLab, CircleCI, GCP, BuildKite)
○ High demand for APIs and UI elements that expose trusted publishing status/metadata

● Adoption by critical projects is steadily advancing
○ …and is having a disproportionate impact on the entire ecosystem’s security

Lessons from PyPI
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What comes next?
The same building blocks that give us 
trusted publishing (OIDC, machine 
identities) are also the building blocks 
for build provenance and code 
signing!

The goal: ecosystems that support 
trusted publishing should find it 
relatively easy to enable Sigstore for 
codesigning.

The future
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Takeaways
● Trusted publishing is a double win: both for security and for usability

○ The best kind of security improvements make users’ lives easier, not harder!
○ Cynically: the only kinds of security improvements that matter are the ones that engineers 

want to use
● Trusted publishing is not tied to PyPI; other package indices can use the 

same techniques and reap the same benefits!
○ We (Trail of Bits) would be thrilled to reapply our experience on PyPI to other ecosystems; 

please come find me during the day and chat with me about it!
● Trusted publishing is a logical step towards our shared supply chain 

goals: source and build provenance, code signing, generalized verifiable 
attestations over software/dependency graphs

Conclusion
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thank you!
● these slides will soon be available here:

https://yossarian.net/publications#packagingcon-2023

● resources:
○ docs.pypi.org/trusted-publishers: official PyPI documentation for trusted publishing
○ “Introducing ‘Trusted Publishers’”: official PyPI announcement post
○ "Trusted publishing: a new benchmark for packaging security": ToB’s writeup on trusted 

publishing, threat modeling, etc.

● Contact:
○ william@trailofbits.com
○ @yossarian@infosec.exchange

end of the talk

https://yossarian.net/publications#packagingcon-2023
https://docs.pypi.org/trusted-publishers/
https://blog.pypi.org/posts/2023-04-20-introducing-trusted-publishers/
https://blog.trailofbits.com/2023/05/23/trusted-publishing-a-new-benchmark-for-packaging-security/
mailto:william@trailofbits.com
https://infosec.exchange/@yossarian

