
1PyCon 2023 | Ergonomic codesigning for the Python ecosystem

2PyCon 2023 | Ergonomic codesigning for the Python ecosystem

ergonomic codesigning for
the Python ecosystem
William Woodruff

3PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● William Woodruff
○ open source group engineering director @ trail of bits
○ long-term OSS contributor (Homebrew, LLVM, Python)

and maintainer (pip-audit, sigstore-python)
○ @yossarian@infosec.exchange

● Trail of Bits
○ ~150 person cybersecurity auditing and engineering

consultancy
○ specialities: cryptography, compilers, program analysis,

“supply chain”, general high assurance software
development

hello

introduction

https://infosec.exchange/@yossarian

4PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● “Python is everywhere, with everything that entails”
○ The “why does everything have 5000 dependencies” part of the talk

● codesigning (for Python packaging): history and past
attempts
○ PGP and other things I’m trying to forget

● Sigstore as an emerging standard for codesigning
○ …and how it resolves problems of identity and key management

● Sigstore’s now & future role in Python packaging, and what
it means for ✨you✨
○ Where we’re currently at and where we’re planning to go

This talk

agenda

5PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● this part is obvious from our vantage point at PyCon
● …but the implications bear consideration:

○ ~everyone on earth (to a first approximation) interacts with software written in Python
○ ~billions of machines run Python, and that Python is critical to their intended operation

● Python wins the decision lottery at companies & universities, in open
source communities & activist groups, with statisticians and
journalists, etc., etc..

Python is everywhere

motivation

6PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● Python’s OSS community is massive, and engages heavily with the
packaging ecosystem

● (nearly) everything is a single pip install away, which has
consequences:
○ Python packaging tools are used extensively by non-programmers;
○ Packaging tool (ab)use is heavily influenced by extensive public use, third party

documentation, and Python’s limited ability to restrict private APIs;

meaning: Python packaging is heavily constrained by existing use;
changes/additions in functionality must not break existing uses*

this includes security improvements!

… because of OSS + universal packaging

motivation

7PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● new buzzword industry term for “don’t run strangers’ code”
● at least two parses:

○ “don’t run strangers’ code”: know what code you’re using before you actually run it
■ static and/or dynamic analyses to detect malicious and/or exploitable changes
■ lots of companies doing work (and selling products) in this space

○ “don’t run strangers’ code”: know whose code you’re running
■ Python development involves multiple implicitly trusted third parties: PyPI, each

package’s author on PyPI, your ISP
■ Each implicitly trusted party should be:

● Made explicit: who are they?
● Scoped and enumerated: what can they do without detection?

● we’re going to use codesigning to address that second parse!

let’s talk about “supply chain security”

 motivation

8PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● codesigning = digital signatures for code (rather than files, docs, etc.)
● digital signatures are cryptographic objects that provide strong

cryptographic proof of:
○ integrity: the input (= code) being signed for has not been altered since signing
○ authenticity: the input (= code) being signed for was signed by a specific identity

● “identity” in digital signature schemes is defined by key possession:
○ private key holder is the signer; they can create signatures for anything they have access to
○ public key holder is the verifier; they can verify any signature that they have the

corresponding input for*

codesigning: a quick overview

codesigning

9PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● verifying digital signatures on packages means we can erase one of
our implicit trust relationships
○ if Bob trusts Alice (= Alice’s private key) to sign for package foo, PyPI cannot deliver a

modified foo without Bob noticing!

● this relationship is tricky:
○ Bob must know Alice’s public key ahead of time: if PyPI is trusted to deliver the public key,

then a compromised PyPI can deliver a modified foo signed with a different private key!
○ Bob must know what Alice is trusted to sign for: trusting Alice for foo should not imply

trusting Alice for bar if she doesn’t rightfully control/own bar
■ This might not matter when foo and bar are adjacent dependencies, but it does

matter if Bob does pip install bar; sudo python -m bar!

codesigning for packaging ecosystems

codesigning

10PyCon 2023 | Ergonomic codesigning for the Python ecosystem

codesigning for packaging ecosystems
this is where ecosystems like PGP fail miserably:

verifiers are expected to maintain keyrings, which configure
trust in a set of identities; this is hard to do correctly!

signers must navigate gpg’s terrible CLI to create signing
keys; strong key generation is not intuitive and frequently
not the default (due to PGP’s age)

signers must additionally store their key material securely,
must prepare for key expiry and recovations, etc.

PGP attempted to solve identity trust with the “strong set,”
which was fully removed from GPG after extensive keyserver
abuse

codesigning

11PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● codesigning support in Python is extremely fragmented:
○ PyPI, and twine (kind of) support PGP signatures, and some packages (<10%) use them

■ PyPI will let you upload a .asc signature for each release distribution; twine
supports this

■ …but pip will (reasonably!) not download or verify these signatures
● Long tail of extremely old (= weak keys), and there’s no way to verify the

signing key anyways
○ wheels (PEP 427) support embedded JOSE (JWS) signatures

■ virtually unused (only a small number of wheels on PyPI); not supported by pip
■ same identity issues as PGP; inherits many of JWT’s mistakes (“alg: none”)

○ …and also S/MIME (PKCS#7/CMS) signatures?
■ “RECORD.p7s is allowed as a courtesy to anyone who would prefer to use S/MIME

signatures to secure their wheel files.”
■ I can’t find any (public) evidence that anyone has ever used these on PyPI
■ Same identity issues as PGP; brings the evil that is PKCS#7 to Python packaging

codesigning for Python packaging: status quo

codesigning

12PyCon 2023 | Ergonomic codesigning for the Python ecosystem

let’s re-evaluate assumptions made in PGP and JOSE/JWS:

● assumption: both humans and computers verify through public keys
○ reality: computers verify keys, but humans only care about identities
○ “I don’t care which key identifies Alice, as long as I can be convinced that it’s Alice’s key”

● assumption: humans are good at maintaining long-term secrets
○ this has literally never been true
○ reality: humans lose PGP keys, 2FA tokens, passwords all the time

● assumption: users understand basic cryptography
○ reality: they might, but they shouldn’t have to!
○ similarly: users should not have to understand PKI (revocation, etc.) to sign/verify safely

can we do better?

codesigning

13PyCon 2023 | Ergonomic codesigning for the Python ecosystem

Sigstore is…

● …a PKI* ecosystem (X.509 CA, RFC 6962 CT)
○ “Let’s Encrypt but for code signing”

● …a framework for binding keys to public identities
○ Leveraging OpenID Connect to communicate with well-known identity

providers (IdPs) like Google, GitHub, etc.

● …a client ecosystem
○ Per-language/ecosystem bindings, like for Python!

● …a Linux Foundation project
○ Developed and maintained by members of the OSS community

can we do better? Yes, with Sigstore!

sigstore

https://openid.net/connect/

14PyCon 2023 | Ergonomic codesigning for the Python ecosystem

Sigstore solves the identity binding and key management issues by binding
ephemeral signing keys to OpenID Connect identities

● Alice generates a local signing keypair (Kpub, Kpriv)
● Alice performs an OIDC flow, receiving an OIDC Token attesting that

she controls alice@example.com
● Alice submits (Kpub, Token) to Sigstore’s CA and receives a Certificate

Cpub binding the public key to alice@example.com
● Alice signs Input using Kpriv, producing SigInput
● Alice publishes Input, Cpub and SigInput and destroys Kpriv

solving identity and key management with Sigstore

sigstore

15PyCon 2023 | Ergonomic codesigning for the Python ecosystem

That was a lot of internal details, including things that need to be
abstracted away to provide a usable codesigning ecosystem.

Let’s see if Sigstore (via sigstore-python) succeeds at providing
that abstraction!

demo time!

sigstore

16PyCon 2023 | Ergonomic codesigning for the Python ecosystem

● What’s the new trust model?
○ Sigstore’s CA is trusted, since Alice has no fixed key: Bob must trust that only the real Alice

can convince the CA to issue a certificate for alice@example.com
○ Comparable to Web PKI: users must trust that only the real Google can convince a CA to

issue a certificate for google.com
● We reduce trust in Sigstore’s CA by requiring transparency:

○ Bob refuses to trust Alice’s certificate unless it appears in appeared in a publicly auditable
CT log at roughly the same time it was issued

○ An attacker targeting Bob might still be able to fool Sigstore’s CA, but not without losing
their stealth: CT makes their attack against Bob globally visible and publicly detectable

This the same technique the Web’s PKI relies on!

“sunlight is the best disinfectant”

sigstore

mailto:alice@example.com

17PyCon 2023 | Ergonomic codesigning for the Python ecosystem

what does any of this mean for Python?

Python packagers and users should not have to be experts in cryptographic
primitive selection or secure key storage to benefit from codesigning.

● Sigstore solves problems of identity and key management that previous
codesigning attempts in Python (PGP, JWS) fundamentally can’t.

● Sigstore is misuse resistant and reduces unnecessary trust in the
package index (including its admins, ISP, CDNs, etc.).

sigstore for python

18PyCon 2023 | Ergonomic codesigning for the Python ecosystem

Sigstore for Python: where we are
● we have a mature Sigstore impl. for Python (sigstore-python) that

can be used to sign anything (including Python distributions)
● we have a GitHub Action (gh-action-sigstore-python) that makes

signing completely painless on CI
● CPython itself is signing its official releases with Sigstore, using each

release maintainers’ email identity:

https://www.python.org/download/sigstore/

sigstore for python

https://www.python.org/download/sigstore/

19PyCon 2023 | Ergonomic codesigning for the Python ecosystem

Sigstore for Python: where we want to be
● PyPI should allow uploading of Sigstore bundles next to their associated

release files
○ …including with a pairing/TOFU* scheme against the package’s pre-existing unauthenticated

metadata
○ Related PEPs: 694, 691, an unwritten one for the TOFU scheme

● pip should (optionally, at first) verify Sigstore bundles during
download/install
○ 2FA for critical projects rollout as a template: mandate signatures for the top N projects

sigstore for python

https://peps.python.org/pep-0694/
https://peps.python.org/pep-0691/

20PyCon 2023 | Ergonomic codesigning for the Python ecosystem

Sigstore for Python: how you can help
● packagers:

○ give our Sigstore client a try: pip install sigstore && sigstore --help
○ tell us about your usability/privacy/etc. concerns!

● (Python) cryptographers and security engineers:
○ Sigstore is not a panacea: it punts policy management to the client

■ help us come up with a reasonable trusted metadata scheme for PyPI!
○ Sigstore is still maturing as an ecosystem, and needs help:

■ PQ-ready signatures?
■ privacy enhancements to Sigstore (blinded identities, reducing online CT lookups)?

sigstore for python

21PyCon 2023 | Ergonomic codesigning for the Python ecosystem

thank you!
● these slides will soon be available here:

https://yossarian.net/publications#pycon-2023

● resources:
○ sigstore.dev: the official Sigstore project website
○ sigstore/sigstore-python: the official Sigstore client for Python
○ "We sign code now": our blog post on Sigstore’s server and client internals

● Contact:
○ william@trailofbits.com
○ @yossarian@infosec.exchange

end of the talk

https://yossarian.net/publications#pycon-2023
https://www.sigstore.dev/
https://github.com/sigstore/sigstore-python
https://blog.trailofbits.com/2022/11/08/sigstore-code-signing-verification-software-supply-chain/

